![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimneg | Structured version Visualization version GIF version |
Description: Limit of the negative of a sequence. (Contributed by Mario Carneiro, 18-May-2016.) |
Ref | Expression |
---|---|
rlimneg.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
rlimneg.2 | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) |
Ref | Expression |
---|---|
rlimneg | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ -𝐵) ⇝𝑟 -𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cnd 11237 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ∈ ℂ) | |
2 | rlimneg.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
3 | rlimneg.2 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) | |
4 | 2, 3 | rlimmptrcl 15585 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
5 | 2 | ralrimiva 3136 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑉) |
6 | dmmptg 6246 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑘 ∈ 𝐴 ↦ 𝐵) = 𝐴) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → dom (𝑘 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
8 | rlimss 15479 | . . . . . 6 ⊢ ((𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → dom (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) | |
9 | 3, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → dom (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
10 | 7, 9 | eqsstrrd 4017 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
11 | 0cn 11236 | . . . 4 ⊢ 0 ∈ ℂ | |
12 | rlimconst 15521 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 0 ∈ ℂ) → (𝑘 ∈ 𝐴 ↦ 0) ⇝𝑟 0) | |
13 | 10, 11, 12 | sylancl 584 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 0) ⇝𝑟 0) |
14 | 1, 4, 13, 3 | rlimsub 15622 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (0 − 𝐵)) ⇝𝑟 (0 − 𝐶)) |
15 | df-neg 11477 | . . 3 ⊢ -𝐵 = (0 − 𝐵) | |
16 | 15 | mpteq2i 5253 | . 2 ⊢ (𝑘 ∈ 𝐴 ↦ -𝐵) = (𝑘 ∈ 𝐴 ↦ (0 − 𝐵)) |
17 | df-neg 11477 | . 2 ⊢ -𝐶 = (0 − 𝐶) | |
18 | 14, 16, 17 | 3brtr4g 5182 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ -𝐵) ⇝𝑟 -𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3051 ⊆ wss 3945 class class class wbr 5148 ↦ cmpt 5231 dom cdm 5677 (class class class)co 7417 ℂcc 11136 ℝcr 11137 0cc0 11138 − cmin 11474 -cneg 11475 ⇝𝑟 crli 15462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-pm 8846 df-en 8963 df-dom 8964 df-sdom 8965 df-sup 9465 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-seq 14000 df-exp 14060 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-rlim 15466 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |