![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2pnedifcoorneor | Structured version Visualization version GIF version |
Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.) |
Ref | Expression |
---|---|
rrx2pnecoorneor.i | ⊢ 𝐼 = {1, 2} |
rrx2pnecoorneor.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
rrx2pnedifcoorneor.a | ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) |
rrx2pnedifcoorneor.b | ⊢ 𝐵 = ((𝑌‘2) − (𝑋‘2)) |
Ref | Expression |
---|---|
rrx2pnedifcoorneor | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrx2pnecoorneor.i | . . 3 ⊢ 𝐼 = {1, 2} | |
2 | rrx2pnecoorneor.b | . . 3 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
3 | 1, 2 | rrx2pnecoorneor 47839 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))) |
4 | rrx2pnedifcoorneor.a | . . . . . 6 ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) | |
5 | 4 | neeq1i 3001 | . . . . 5 ⊢ (𝐴 ≠ 0 ↔ ((𝑌‘1) − (𝑋‘1)) ≠ 0) |
6 | rrx2pnedifcoorneor.b | . . . . . 6 ⊢ 𝐵 = ((𝑌‘2) − (𝑋‘2)) | |
7 | 6 | neeq1i 3001 | . . . . 5 ⊢ (𝐵 ≠ 0 ↔ ((𝑌‘2) − (𝑋‘2)) ≠ 0) |
8 | 5, 7 | orbi12i 912 | . . . 4 ⊢ ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0)) |
9 | 1, 2 | rrx2pxel 47835 | . . . . . . . . 9 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘1) ∈ ℝ) |
10 | 9 | recnd 11278 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘1) ∈ ℂ) |
11 | 1, 2 | rrx2pxel 47835 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℝ) |
12 | 11 | recnd 11278 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℂ) |
13 | subeq0 11522 | . . . . . . . 8 ⊢ (((𝑌‘1) ∈ ℂ ∧ (𝑋‘1) ∈ ℂ) → (((𝑌‘1) − (𝑋‘1)) = 0 ↔ (𝑌‘1) = (𝑋‘1))) | |
14 | 10, 12, 13 | syl2anr 595 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (((𝑌‘1) − (𝑋‘1)) = 0 ↔ (𝑌‘1) = (𝑋‘1))) |
15 | 14 | necon3bid 2981 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (((𝑌‘1) − (𝑋‘1)) ≠ 0 ↔ (𝑌‘1) ≠ (𝑋‘1))) |
16 | 1, 2 | rrx2pyel 47836 | . . . . . . . . 9 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℝ) |
17 | 16 | recnd 11278 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℂ) |
18 | 1, 2 | rrx2pyel 47836 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
19 | 18 | recnd 11278 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℂ) |
20 | subeq0 11522 | . . . . . . . 8 ⊢ (((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2))) | |
21 | 17, 19, 20 | syl2anr 595 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2))) |
22 | 21 | necon3bid 2981 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (((𝑌‘2) − (𝑋‘2)) ≠ 0 ↔ (𝑌‘2) ≠ (𝑋‘2))) |
23 | 15, 22 | orbi12d 916 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ ((𝑌‘1) ≠ (𝑋‘1) ∨ (𝑌‘2) ≠ (𝑋‘2)))) |
24 | necom 2990 | . . . . . 6 ⊢ ((𝑌‘1) ≠ (𝑋‘1) ↔ (𝑋‘1) ≠ (𝑌‘1)) | |
25 | necom 2990 | . . . . . 6 ⊢ ((𝑌‘2) ≠ (𝑋‘2) ↔ (𝑋‘2) ≠ (𝑌‘2)) | |
26 | 24, 25 | orbi12i 912 | . . . . 5 ⊢ (((𝑌‘1) ≠ (𝑋‘1) ∨ (𝑌‘2) ≠ (𝑋‘2)) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))) |
27 | 23, 26 | bitrdi 286 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))) |
28 | 8, 27 | bitrid 282 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))) |
29 | 28 | 3adant3 1129 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))) |
30 | 3, 29 | mpbird 256 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2936 {cpr 4632 ‘cfv 6551 (class class class)co 7424 ↑m cmap 8849 ℂcc 11142 ℝcr 11143 0cc0 11144 1c1 11145 − cmin 11480 2c2 12303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-po 5592 df-so 5593 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-1st 7997 df-2nd 7998 df-er 8729 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11286 df-mnf 11287 df-ltxr 11289 df-sub 11482 df-2 12311 |
This theorem is referenced by: rrx2pnedifcoorneorr 47841 |
Copyright terms: Public domain | W3C validator |