MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqfeq4 Structured version   Visualization version   GIF version

Theorem seqfeq4 14056
Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
seqfeq4.m (𝜑𝑁 ∈ (ℤ𝑀))
seqfeq4.f ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
seqfeq4.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqfeq4.id ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
Assertion
Ref Expression
seqfeq4 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁))
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑄,𝑦   𝑥,𝑆,𝑦

Proof of Theorem seqfeq4
StepHypRef Expression
1 fvex 6915 . . 3 (seq𝑀( + , 𝐹)‘𝑁) ∈ V
2 fvi 6979 . . 3 ((seq𝑀( + , 𝐹)‘𝑁) ∈ V → ( I ‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁))
31, 2ax-mp 5 . 2 ( I ‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁)
4 seqfeq4.cl . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
5 seqfeq4.f . . 3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
6 seqfeq4.m . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
7 seqfeq4.id . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
8 ovex 7459 . . . . 5 (𝑥 + 𝑦) ∈ V
9 fvi 6979 . . . . 5 ((𝑥 + 𝑦) ∈ V → ( I ‘(𝑥 + 𝑦)) = (𝑥 + 𝑦))
108, 9ax-mp 5 . . . 4 ( I ‘(𝑥 + 𝑦)) = (𝑥 + 𝑦)
11 fvi 6979 . . . . . 6 (𝑥 ∈ V → ( I ‘𝑥) = 𝑥)
1211elv 3479 . . . . 5 ( I ‘𝑥) = 𝑥
13 fvi 6979 . . . . . 6 (𝑦 ∈ V → ( I ‘𝑦) = 𝑦)
1413elv 3479 . . . . 5 ( I ‘𝑦) = 𝑦
1512, 14oveq12i 7438 . . . 4 (( I ‘𝑥)𝑄( I ‘𝑦)) = (𝑥𝑄𝑦)
167, 10, 153eqtr4g 2793 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ( I ‘(𝑥 + 𝑦)) = (( I ‘𝑥)𝑄( I ‘𝑦)))
17 fvex 6915 . . . 4 (𝐹𝑥) ∈ V
18 fvi 6979 . . . 4 ((𝐹𝑥) ∈ V → ( I ‘(𝐹𝑥)) = (𝐹𝑥))
1917, 18mp1i 13 . . 3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ( I ‘(𝐹𝑥)) = (𝐹𝑥))
204, 5, 6, 16, 19seqhomo 14054 . 2 (𝜑 → ( I ‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐹)‘𝑁))
213, 20eqtr3id 2782 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3473   I cid 5579  cfv 6553  (class class class)co 7426  cuz 12860  ...cfz 13524  seqcseq 14006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-seq 14007
This theorem is referenced by:  seqfeq3  14057  gsumpropd2lem  18646  gsumzoppg  19906
  Copyright terms: Public domain W3C validator
OSZAR »