![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqfeq4 | Structured version Visualization version GIF version |
Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
seqfeq4.m | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
seqfeq4.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) |
seqfeq4.cl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
seqfeq4.id | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦)) |
Ref | Expression |
---|---|
seqfeq4 | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6915 | . . 3 ⊢ (seq𝑀( + , 𝐹)‘𝑁) ∈ V | |
2 | fvi 6979 | . . 3 ⊢ ((seq𝑀( + , 𝐹)‘𝑁) ∈ V → ( I ‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( I ‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁) |
4 | seqfeq4.cl | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
5 | seqfeq4.f | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) | |
6 | seqfeq4.m | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
7 | seqfeq4.id | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦)) | |
8 | ovex 7459 | . . . . 5 ⊢ (𝑥 + 𝑦) ∈ V | |
9 | fvi 6979 | . . . . 5 ⊢ ((𝑥 + 𝑦) ∈ V → ( I ‘(𝑥 + 𝑦)) = (𝑥 + 𝑦)) | |
10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ ( I ‘(𝑥 + 𝑦)) = (𝑥 + 𝑦) |
11 | fvi 6979 | . . . . . 6 ⊢ (𝑥 ∈ V → ( I ‘𝑥) = 𝑥) | |
12 | 11 | elv 3479 | . . . . 5 ⊢ ( I ‘𝑥) = 𝑥 |
13 | fvi 6979 | . . . . . 6 ⊢ (𝑦 ∈ V → ( I ‘𝑦) = 𝑦) | |
14 | 13 | elv 3479 | . . . . 5 ⊢ ( I ‘𝑦) = 𝑦 |
15 | 12, 14 | oveq12i 7438 | . . . 4 ⊢ (( I ‘𝑥)𝑄( I ‘𝑦)) = (𝑥𝑄𝑦) |
16 | 7, 10, 15 | 3eqtr4g 2793 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ( I ‘(𝑥 + 𝑦)) = (( I ‘𝑥)𝑄( I ‘𝑦))) |
17 | fvex 6915 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
18 | fvi 6979 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ V → ( I ‘(𝐹‘𝑥)) = (𝐹‘𝑥)) | |
19 | 17, 18 | mp1i 13 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ( I ‘(𝐹‘𝑥)) = (𝐹‘𝑥)) |
20 | 4, 5, 6, 16, 19 | seqhomo 14054 | . 2 ⊢ (𝜑 → ( I ‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐹)‘𝑁)) |
21 | 3, 20 | eqtr3id 2782 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3473 I cid 5579 ‘cfv 6553 (class class class)co 7426 ℤ≥cuz 12860 ...cfz 13524 seqcseq 14006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-seq 14007 |
This theorem is referenced by: seqfeq3 14057 gsumpropd2lem 18646 gsumzoppg 19906 |
Copyright terms: Public domain | W3C validator |