![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqp1d | Structured version Visualization version GIF version |
Description: Value of the sequence builder function at a successor, deduction form. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by AV, 3-May-2024.) |
Ref | Expression |
---|---|
seqp1d.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
seqp1d.2 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
seqp1d.3 | ⊢ 𝐾 = (𝑁 + 1) |
seqp1d.4 | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝐴) |
seqp1d.5 | ⊢ (𝜑 → (𝐹‘𝐾) = 𝐵) |
Ref | Expression |
---|---|
seqp1d | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqp1d.3 | . . . 4 ⊢ 𝐾 = (𝑁 + 1) | |
2 | 1 | fveq2i 6899 | . . 3 ⊢ (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑁 + 1)) |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑁 + 1))) |
4 | seqp1d.2 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
5 | seqp1d.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | 4, 5 | eleqtrdi 2835 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
7 | seqp1 14017 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
9 | seqp1d.4 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝐴) | |
10 | 1 | fveq2i 6899 | . . . 4 ⊢ (𝐹‘𝐾) = (𝐹‘(𝑁 + 1)) |
11 | seqp1d.5 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐾) = 𝐵) | |
12 | 10, 11 | eqtr3id 2779 | . . 3 ⊢ (𝜑 → (𝐹‘(𝑁 + 1)) = 𝐵) |
13 | 9, 12 | oveq12d 7437 | . 2 ⊢ (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) = (𝐴 + 𝐵)) |
14 | 3, 8, 13 | 3eqtrd 2769 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐴 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 1c1 11141 + caddc 11143 ℤ≥cuz 12855 seqcseq 14002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-n0 12506 df-z 12592 df-uz 12856 df-seq 14003 |
This theorem is referenced by: climcndslem2 15832 ege2le3 16070 efgt1p2 16094 efgt1p 16095 ovolunlem1a 25469 itcoval1 47922 itcoval2 47923 itcoval3 47924 itcovalsuc 47926 ackvalsuc1mpt 47937 |
Copyright terms: Public domain | W3C validator |