![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0rernmpt | Structured version Visualization version GIF version |
Description: If the sum of nonnegative extended reals is not +∞ then no term is +∞. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
sge0rernmpt.xph | ⊢ Ⅎ𝑥𝜑 |
sge0rernmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0rernmpt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
sge0rernmpt.re | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) |
Ref | Expression |
---|---|
sge0rernmpt | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 11285 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ∈ ℝ*) |
3 | pnfxr 11292 | . . 3 ⊢ +∞ ∈ ℝ* | |
4 | 3 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → +∞ ∈ ℝ*) |
5 | iccssxr 13433 | . . 3 ⊢ (0[,]+∞) ⊆ ℝ* | |
6 | sge0rernmpt.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
7 | 5, 6 | sselid 3976 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
8 | iccgelb 13406 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵) | |
9 | 2, 4, 6, 8 | syl3anc 1369 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) |
10 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝐵 < +∞) → ¬ 𝐵 < +∞) | |
11 | nltpnft 13169 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ* → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞)) | |
12 | 7, 11 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞)) |
13 | 12 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝐵 < +∞) → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞)) |
14 | 10, 13 | mpbird 257 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝐵 < +∞) → 𝐵 = +∞) |
15 | 14 | eqcomd 2734 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝐵 < +∞) → +∞ = 𝐵) |
16 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
17 | eqid 2728 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
18 | 17 | elrnmpt1 5954 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ (0[,]+∞)) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
19 | 16, 6, 18 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
20 | 19 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝐵 < +∞) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
21 | 15, 20 | eqeltrd 2829 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝐵 < +∞) → +∞ ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
22 | sge0rernmpt.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
23 | sge0rernmpt.xph | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
24 | 23, 6, 17 | fmptdf 7121 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
25 | sge0rernmpt.re | . . . . 5 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) | |
26 | 22, 24, 25 | sge0rern 45770 | . . . 4 ⊢ (𝜑 → ¬ +∞ ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
27 | 26 | ad2antrr 725 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝐵 < +∞) → ¬ +∞ ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
28 | 21, 27 | condan 817 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 < +∞) |
29 | 2, 4, 7, 9, 28 | elicod 13400 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 class class class wbr 5142 ↦ cmpt 5225 ran crn 5673 ‘cfv 6542 (class class class)co 7414 ℝcr 11131 0cc0 11132 +∞cpnf 11269 ℝ*cxr 11271 < clt 11272 ≤ cle 11273 [,)cico 13352 [,]cicc 13353 Σ^csumge0 45744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-n0 12497 df-z 12583 df-uz 12847 df-rp 13001 df-ico 13356 df-icc 13357 df-fz 13511 df-fzo 13654 df-seq 13993 df-exp 14053 df-hash 14316 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15458 df-sum 15659 df-sumge0 45745 |
This theorem is referenced by: sge0ltfirpmpt2 45808 sge0xadd 45817 |
Copyright terms: Public domain | W3C validator |