![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqdivd | Structured version Visualization version GIF version |
Description: Distribution of squaring over division. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
mulexpd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
sqdivd.3 | ⊢ (𝜑 → 𝐵 ≠ 0) |
Ref | Expression |
---|---|
sqdivd | ⊢ (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mulexpd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | sqdivd.3 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
4 | sqdiv 14118 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 (class class class)co 7420 ℂcc 11137 0cc0 11139 / cdiv 11902 2c2 12298 ↑cexp 14059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-n0 12504 df-z 12590 df-uz 12854 df-seq 14000 df-exp 14060 |
This theorem is referenced by: sqreulem 15339 sqrt2irrlem 16225 sqgcd 16536 numdensq 16726 pythagtriplem19 16802 4sqlem7 16913 4sqlem10 16916 mul4sqlem 16922 pjthlem1 25378 tanarg 26566 heron 26783 mcubic 26792 cubic2 26793 dquartlem2 26797 dquart 26798 quart1lem 26800 quart1 26801 atandmtan 26865 basellem8 27033 2sqlem3 27366 pntlemr 27548 pntlemo 27553 axsegconlem9 28749 pjhthlem1 31214 areacirclem1 37181 areacirclem4 37184 flt4lem5e 42080 flt4lem6 42082 pellexlem2 42250 pellexlem6 42254 itscnhlc0yqe 47832 itschlc0xyqsol1 47839 itsclc0xyqsolr 47842 itsclquadb 47849 |
Copyright terms: Public domain | W3C validator |