![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem37 | Structured version Visualization version GIF version |
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺‘𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem37.1 | ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} |
stoweidlem37.2 | ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) |
stoweidlem37.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
stoweidlem37.4 | ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) |
stoweidlem37.5 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
stoweidlem37.6 | ⊢ (𝜑 → 𝑍 ∈ 𝑇) |
Ref | Expression |
---|---|
stoweidlem37 | ⊢ (𝜑 → (𝑃‘𝑍) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem37.6 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑇) | |
2 | stoweidlem37.1 | . . . 4 ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} | |
3 | stoweidlem37.2 | . . . 4 ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) | |
4 | stoweidlem37.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
5 | stoweidlem37.4 | . . . 4 ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) | |
6 | stoweidlem37.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) | |
7 | 2, 3, 4, 5, 6 | stoweidlem30 45412 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑇) → (𝑃‘𝑍) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍))) |
8 | 1, 7 | mpdan 686 | . 2 ⊢ (𝜑 → (𝑃‘𝑍) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍))) |
9 | 5 | ffvelcdmda 7088 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐺‘𝑖) ∈ 𝑄) |
10 | fveq1 6890 | . . . . . . . . . 10 ⊢ (ℎ = (𝐺‘𝑖) → (ℎ‘𝑍) = ((𝐺‘𝑖)‘𝑍)) | |
11 | 10 | eqeq1d 2730 | . . . . . . . . 9 ⊢ (ℎ = (𝐺‘𝑖) → ((ℎ‘𝑍) = 0 ↔ ((𝐺‘𝑖)‘𝑍) = 0)) |
12 | fveq1 6890 | . . . . . . . . . . . 12 ⊢ (ℎ = (𝐺‘𝑖) → (ℎ‘𝑡) = ((𝐺‘𝑖)‘𝑡)) | |
13 | 12 | breq2d 5154 | . . . . . . . . . . 11 ⊢ (ℎ = (𝐺‘𝑖) → (0 ≤ (ℎ‘𝑡) ↔ 0 ≤ ((𝐺‘𝑖)‘𝑡))) |
14 | 12 | breq1d 5152 | . . . . . . . . . . 11 ⊢ (ℎ = (𝐺‘𝑖) → ((ℎ‘𝑡) ≤ 1 ↔ ((𝐺‘𝑖)‘𝑡) ≤ 1)) |
15 | 13, 14 | anbi12d 631 | . . . . . . . . . 10 ⊢ (ℎ = (𝐺‘𝑖) → ((0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1))) |
16 | 15 | ralbidv 3173 | . . . . . . . . 9 ⊢ (ℎ = (𝐺‘𝑖) → (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1))) |
17 | 11, 16 | anbi12d 631 | . . . . . . . 8 ⊢ (ℎ = (𝐺‘𝑖) → (((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)) ↔ (((𝐺‘𝑖)‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1)))) |
18 | 17, 2 | elrab2 3684 | . . . . . . 7 ⊢ ((𝐺‘𝑖) ∈ 𝑄 ↔ ((𝐺‘𝑖) ∈ 𝐴 ∧ (((𝐺‘𝑖)‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1)))) |
19 | 9, 18 | sylib 217 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺‘𝑖) ∈ 𝐴 ∧ (((𝐺‘𝑖)‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1)))) |
20 | 19 | simprld 771 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺‘𝑖)‘𝑍) = 0) |
21 | 20 | sumeq2dv 15675 | . . . 4 ⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍) = Σ𝑖 ∈ (1...𝑀)0) |
22 | fzfi 13963 | . . . . 5 ⊢ (1...𝑀) ∈ Fin | |
23 | olc 867 | . . . . 5 ⊢ ((1...𝑀) ∈ Fin → ((1...𝑀) ⊆ (ℤ≥‘1) ∨ (1...𝑀) ∈ Fin)) | |
24 | sumz 15694 | . . . . 5 ⊢ (((1...𝑀) ⊆ (ℤ≥‘1) ∨ (1...𝑀) ∈ Fin) → Σ𝑖 ∈ (1...𝑀)0 = 0) | |
25 | 22, 23, 24 | mp2b 10 | . . . 4 ⊢ Σ𝑖 ∈ (1...𝑀)0 = 0 |
26 | 21, 25 | eqtrdi 2784 | . . 3 ⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍) = 0) |
27 | 26 | oveq2d 7430 | . 2 ⊢ (𝜑 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍)) = ((1 / 𝑀) · 0)) |
28 | 4 | nncnd 12252 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
29 | 4 | nnne0d 12286 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 0) |
30 | 28, 29 | reccld 12007 | . . 3 ⊢ (𝜑 → (1 / 𝑀) ∈ ℂ) |
31 | 30 | mul01d 11437 | . 2 ⊢ (𝜑 → ((1 / 𝑀) · 0) = 0) |
32 | 8, 27, 31 | 3eqtrd 2772 | 1 ⊢ (𝜑 → (𝑃‘𝑍) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ∀wral 3057 {crab 3428 ⊆ wss 3945 class class class wbr 5142 ↦ cmpt 5225 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 Fincfn 8957 ℝcr 11131 0cc0 11132 1c1 11133 · cmul 11137 ≤ cle 11273 / cdiv 11895 ℕcn 12236 ℤ≥cuz 12846 ...cfz 13510 Σcsu 15658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-n0 12497 df-z 12583 df-uz 12847 df-rp 13001 df-fz 13511 df-fzo 13654 df-seq 13993 df-exp 14053 df-hash 14316 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15458 df-sum 15659 |
This theorem is referenced by: stoweidlem44 45426 |
Copyright terms: Public domain | W3C validator |