![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem5 | Structured version Visualization version GIF version |
Description: There exists a δ as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: 0 < δ < 1 , p >= δ on 𝑇 ∖ 𝑈. Here 𝐷 is used to represent δ in the paper and 𝑄 to represent 𝑇 ∖ 𝑈 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem5.1 | ⊢ Ⅎ𝑡𝜑 |
stoweidlem5.2 | ⊢ 𝐷 = if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) |
stoweidlem5.3 | ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) |
stoweidlem5.4 | ⊢ (𝜑 → 𝑄 ⊆ 𝑇) |
stoweidlem5.5 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
stoweidlem5.6 | ⊢ (𝜑 → ∀𝑡 ∈ 𝑄 𝐶 ≤ (𝑃‘𝑡)) |
Ref | Expression |
---|---|
stoweidlem5 | ⊢ (𝜑 → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem5.2 | . . 3 ⊢ 𝐷 = if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) | |
2 | stoweidlem5.5 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
3 | halfre 12450 | . . . . 5 ⊢ (1 / 2) ∈ ℝ | |
4 | halfgt0 12452 | . . . . 5 ⊢ 0 < (1 / 2) | |
5 | 3, 4 | elrpii 13003 | . . . 4 ⊢ (1 / 2) ∈ ℝ+ |
6 | ifcl 4569 | . . . 4 ⊢ ((𝐶 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ+) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ+) | |
7 | 2, 5, 6 | sylancl 585 | . . 3 ⊢ (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ+) |
8 | 1, 7 | eqeltrid 2833 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℝ+) |
9 | 8 | rpred 13042 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
10 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
11 | 1red 11239 | . . 3 ⊢ (𝜑 → 1 ∈ ℝ) | |
12 | 2 | rpred 13042 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
13 | min2 13195 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (1 / 2)) | |
14 | 12, 3, 13 | sylancl 585 | . . . 4 ⊢ (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (1 / 2)) |
15 | 1, 14 | eqbrtrid 5177 | . . 3 ⊢ (𝜑 → 𝐷 ≤ (1 / 2)) |
16 | halflt1 12454 | . . . 4 ⊢ (1 / 2) < 1 | |
17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → (1 / 2) < 1) |
18 | 9, 10, 11, 15, 17 | lelttrd 11396 | . 2 ⊢ (𝜑 → 𝐷 < 1) |
19 | stoweidlem5.1 | . . 3 ⊢ Ⅎ𝑡𝜑 | |
20 | 7 | rpred 13042 | . . . . . . 7 ⊢ (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ) |
21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ) |
22 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → 𝐶 ∈ ℝ) |
23 | stoweidlem5.3 | . . . . . . . 8 ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) | |
24 | 23 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → 𝑃:𝑇⟶ℝ) |
25 | stoweidlem5.4 | . . . . . . . 8 ⊢ (𝜑 → 𝑄 ⊆ 𝑇) | |
26 | 25 | sselda 3978 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → 𝑡 ∈ 𝑇) |
27 | 24, 26 | ffvelcdmd 7089 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → (𝑃‘𝑡) ∈ ℝ) |
28 | min1 13194 | . . . . . . . 8 ⊢ ((𝐶 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶) | |
29 | 12, 3, 28 | sylancl 585 | . . . . . . 7 ⊢ (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶) |
30 | 29 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶) |
31 | stoweidlem5.6 | . . . . . . 7 ⊢ (𝜑 → ∀𝑡 ∈ 𝑄 𝐶 ≤ (𝑃‘𝑡)) | |
32 | 31 | r19.21bi 3244 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → 𝐶 ≤ (𝑃‘𝑡)) |
33 | 21, 22, 27, 30, 32 | letrd 11395 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (𝑃‘𝑡)) |
34 | 1, 33 | eqbrtrid 5177 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → 𝐷 ≤ (𝑃‘𝑡)) |
35 | 34 | ex 412 | . . 3 ⊢ (𝜑 → (𝑡 ∈ 𝑄 → 𝐷 ≤ (𝑃‘𝑡))) |
36 | 19, 35 | ralrimi 3250 | . 2 ⊢ (𝜑 → ∀𝑡 ∈ 𝑄 𝐷 ≤ (𝑃‘𝑡)) |
37 | eleq1 2817 | . . . . 5 ⊢ (𝑑 = 𝐷 → (𝑑 ∈ ℝ+ ↔ 𝐷 ∈ ℝ+)) | |
38 | breq1 5145 | . . . . 5 ⊢ (𝑑 = 𝐷 → (𝑑 < 1 ↔ 𝐷 < 1)) | |
39 | breq1 5145 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (𝑑 ≤ (𝑃‘𝑡) ↔ 𝐷 ≤ (𝑃‘𝑡))) | |
40 | 39 | ralbidv 3173 | . . . . 5 ⊢ (𝑑 = 𝐷 → (∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡) ↔ ∀𝑡 ∈ 𝑄 𝐷 ≤ (𝑃‘𝑡))) |
41 | 37, 38, 40 | 3anbi123d 1433 | . . . 4 ⊢ (𝑑 = 𝐷 → ((𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡)) ↔ (𝐷 ∈ ℝ+ ∧ 𝐷 < 1 ∧ ∀𝑡 ∈ 𝑄 𝐷 ≤ (𝑃‘𝑡)))) |
42 | 41 | spcegv 3583 | . . 3 ⊢ (𝐷 ∈ ℝ+ → ((𝐷 ∈ ℝ+ ∧ 𝐷 < 1 ∧ ∀𝑡 ∈ 𝑄 𝐷 ≤ (𝑃‘𝑡)) → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡)))) |
43 | 8, 42 | syl 17 | . 2 ⊢ (𝜑 → ((𝐷 ∈ ℝ+ ∧ 𝐷 < 1 ∧ ∀𝑡 ∈ 𝑄 𝐷 ≤ (𝑃‘𝑡)) → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡)))) |
44 | 8, 18, 36, 43 | mp3and 1461 | 1 ⊢ (𝜑 → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∃wex 1774 Ⅎwnf 1778 ∈ wcel 2099 ∀wral 3057 ⊆ wss 3945 ifcif 4524 class class class wbr 5142 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ℝcr 11131 1c1 11133 < clt 11272 ≤ cle 11273 / cdiv 11895 2c2 12291 ℝ+crp 13000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-2 12299 df-rp 13001 |
This theorem is referenced by: stoweidlem28 45410 |
Copyright terms: Public domain | W3C validator |