![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > submuladdmuld | Structured version Visualization version GIF version |
Description: Transformation of a sum of a product of a difference and a product with the subtrahend of the difference. (Contributed by AV, 2-Feb-2023.) |
Ref | Expression |
---|---|
submuladdmuld.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
submuladdmuld.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
submuladdmuld.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
submuladdmuld.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
Ref | Expression |
---|---|
submuladdmuld | ⊢ (𝜑 → (((𝐴 − 𝐵) · 𝐶) + (𝐵 · 𝐷)) = ((𝐴 · 𝐶) + (𝐵 · (𝐷 − 𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submuladdmuld.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | submuladdmuld.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | submuladdmuld.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | 1, 2, 3 | subdird 11701 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))) |
5 | 4 | oveq1d 7435 | . 2 ⊢ (𝜑 → (((𝐴 − 𝐵) · 𝐶) + (𝐵 · 𝐷)) = (((𝐴 · 𝐶) − (𝐵 · 𝐶)) + (𝐵 · 𝐷))) |
6 | 1, 3 | mulcld 11264 | . . 3 ⊢ (𝜑 → (𝐴 · 𝐶) ∈ ℂ) |
7 | 2, 3 | mulcld 11264 | . . 3 ⊢ (𝜑 → (𝐵 · 𝐶) ∈ ℂ) |
8 | submuladdmuld.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
9 | 2, 8 | mulcld 11264 | . . 3 ⊢ (𝜑 → (𝐵 · 𝐷) ∈ ℂ) |
10 | 6, 7, 9 | subadd23d 11623 | . 2 ⊢ (𝜑 → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) + (𝐵 · 𝐷)) = ((𝐴 · 𝐶) + ((𝐵 · 𝐷) − (𝐵 · 𝐶)))) |
11 | 2, 8, 3 | subdid 11700 | . . . 4 ⊢ (𝜑 → (𝐵 · (𝐷 − 𝐶)) = ((𝐵 · 𝐷) − (𝐵 · 𝐶))) |
12 | 11 | eqcomd 2734 | . . 3 ⊢ (𝜑 → ((𝐵 · 𝐷) − (𝐵 · 𝐶)) = (𝐵 · (𝐷 − 𝐶))) |
13 | 12 | oveq2d 7436 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐶) + ((𝐵 · 𝐷) − (𝐵 · 𝐶))) = ((𝐴 · 𝐶) + (𝐵 · (𝐷 − 𝐶)))) |
14 | 5, 10, 13 | 3eqtrd 2772 | 1 ⊢ (𝜑 → (((𝐴 − 𝐵) · 𝐶) + (𝐵 · 𝐷)) = ((𝐴 · 𝐶) + (𝐵 · (𝐷 − 𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 (class class class)co 7420 ℂcc 11136 + caddc 11141 · cmul 11143 − cmin 11474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-ltxr 11283 df-sub 11476 |
This theorem is referenced by: rrx2vlinest 47814 |
Copyright terms: Public domain | W3C validator |