MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglngne Structured version   Visualization version   GIF version

Theorem tglngne 28374
Description: It takes two different points to form a line. (Contributed by Thierry Arnoux, 6-Aug-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tglngne.1 (𝜑𝑍 ∈ (𝑋𝐿𝑌))
Assertion
Ref Expression
tglngne (𝜑𝑋𝑌)

Proof of Theorem tglngne
StepHypRef Expression
1 tglngne.1 . . . . . 6 (𝜑𝑍 ∈ (𝑋𝐿𝑌))
2 df-ov 7429 . . . . . 6 (𝑋𝐿𝑌) = (𝐿‘⟨𝑋, 𝑌⟩)
31, 2eleqtrdi 2839 . . . . 5 (𝜑𝑍 ∈ (𝐿‘⟨𝑋, 𝑌⟩))
4 elfvdm 6939 . . . . 5 (𝑍 ∈ (𝐿‘⟨𝑋, 𝑌⟩) → ⟨𝑋, 𝑌⟩ ∈ dom 𝐿)
53, 4syl 17 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom 𝐿)
6 tglngval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
7 tglngval.p . . . . . 6 𝑃 = (Base‘𝐺)
8 tglngval.l . . . . . 6 𝐿 = (LineG‘𝐺)
9 tglngval.i . . . . . 6 𝐼 = (Itv‘𝐺)
107, 8, 9tglnfn 28371 . . . . 5 (𝐺 ∈ TarskiG → 𝐿 Fn ((𝑃 × 𝑃) ∖ I ))
11 fndm 6662 . . . . 5 (𝐿 Fn ((𝑃 × 𝑃) ∖ I ) → dom 𝐿 = ((𝑃 × 𝑃) ∖ I ))
126, 10, 113syl 18 . . . 4 (𝜑 → dom 𝐿 = ((𝑃 × 𝑃) ∖ I ))
135, 12eleqtrd 2831 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((𝑃 × 𝑃) ∖ I ))
1413eldifbd 3962 . 2 (𝜑 → ¬ ⟨𝑋, 𝑌⟩ ∈ I )
15 df-br 5153 . . . 4 (𝑋 I 𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ I )
16 tglngval.y . . . . 5 (𝜑𝑌𝑃)
17 ideqg 5858 . . . . 5 (𝑌𝑃 → (𝑋 I 𝑌𝑋 = 𝑌))
1816, 17syl 17 . . . 4 (𝜑 → (𝑋 I 𝑌𝑋 = 𝑌))
1915, 18bitr3id 284 . . 3 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ I ↔ 𝑋 = 𝑌))
2019necon3bbid 2975 . 2 (𝜑 → (¬ ⟨𝑋, 𝑌⟩ ∈ I ↔ 𝑋𝑌))
2114, 20mpbid 231 1 (𝜑𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1533  wcel 2098  wne 2937  cdif 3946  cop 4638   class class class wbr 5152   I cid 5579   × cxp 5680  dom cdm 5682   Fn wfn 6548  cfv 6553  (class class class)co 7426  Basecbs 17187  TarskiGcstrkg 28251  Itvcitv 28257  LineGclng 28258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 7999  df-2nd 8000  df-trkg 28277
This theorem is referenced by:  lnhl  28439  tglnne  28452  tglineneq  28468  tglineinteq  28469  ncolncol  28470  coltr  28471  coltr3  28472  perprag  28550
  Copyright terms: Public domain W3C validator
OSZAR »