![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coltr3 | Structured version Visualization version GIF version |
Description: A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
Ref | Expression |
---|---|
tglineintmo.p | ⊢ 𝑃 = (Base‘𝐺) |
tglineintmo.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineintmo.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineintmo.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
coltr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
coltr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
coltr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
coltr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
coltr.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) |
coltr3.2 | ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐶)) |
Ref | Expression |
---|---|
coltr3 | ⊢ (𝜑 → 𝐷 ∈ (𝐵𝐿𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineintmo.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | eqid 2728 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
3 | tglineintmo.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tglineintmo.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐺 ∈ TarskiG) |
6 | coltr.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 ∈ 𝑃) |
8 | coltr.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐷 ∈ 𝑃) |
10 | coltr3.2 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐶)) | |
11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐷 ∈ (𝐴𝐼𝐶)) |
12 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶) | |
13 | 12 | oveq2d 7436 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐴𝐼𝐴) = (𝐴𝐼𝐶)) |
14 | 11, 13 | eleqtrrd 2832 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐷 ∈ (𝐴𝐼𝐴)) |
15 | 1, 2, 3, 5, 7, 9, 14 | axtgbtwnid 28269 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐷) |
16 | coltr.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) | |
17 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 ∈ (𝐵𝐿𝐶)) |
18 | 15, 17 | eqeltrrd 2830 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐷 ∈ (𝐵𝐿𝐶)) |
19 | tglineintmo.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
20 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐺 ∈ TarskiG) |
21 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ 𝑃) |
22 | coltr.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
23 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐶 ∈ 𝑃) |
24 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐷 ∈ 𝑃) |
25 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ≠ 𝐶) | |
26 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐷 ∈ (𝐴𝐼𝐶)) |
27 | 1, 3, 19, 20, 21, 23, 24, 25, 26 | btwnlng1 28422 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐷 ∈ (𝐴𝐿𝐶)) |
28 | 25 | necomd 2993 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐶 ≠ 𝐴) |
29 | coltr.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
30 | 29 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ∈ 𝑃) |
31 | 1, 19, 3, 4, 29, 22, 16 | tglngne 28353 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
32 | 31 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ≠ 𝐶) |
33 | 16 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ (𝐵𝐿𝐶)) |
34 | 1, 3, 19, 20, 23, 21, 30, 28, 33, 32 | lnrot1 28426 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ∈ (𝐶𝐿𝐴)) |
35 | 1, 3, 19, 20, 23, 21, 28, 30, 32, 34 | tglineelsb2 28435 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (𝐶𝐿𝐴) = (𝐶𝐿𝐵)) |
36 | 1, 3, 19, 20, 21, 23, 25 | tglinecom 28438 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (𝐴𝐿𝐶) = (𝐶𝐿𝐴)) |
37 | 1, 3, 19, 4, 29, 22, 31 | tglinecom 28438 | . . . . 5 ⊢ (𝜑 → (𝐵𝐿𝐶) = (𝐶𝐿𝐵)) |
38 | 37 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (𝐵𝐿𝐶) = (𝐶𝐿𝐵)) |
39 | 35, 36, 38 | 3eqtr4d 2778 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (𝐴𝐿𝐶) = (𝐵𝐿𝐶)) |
40 | 27, 39 | eleqtrd 2831 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐷 ∈ (𝐵𝐿𝐶)) |
41 | 18, 40 | pm2.61dane 3026 | 1 ⊢ (𝜑 → 𝐷 ∈ (𝐵𝐿𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ‘cfv 6548 (class class class)co 7420 Basecbs 17179 distcds 17241 TarskiGcstrkg 28230 Itvcitv 28236 LineGclng 28237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-oadd 8490 df-er 8724 df-pm 8847 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-dju 9924 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-xnn0 12575 df-z 12589 df-uz 12853 df-fz 13517 df-fzo 13660 df-hash 14322 df-word 14497 df-concat 14553 df-s1 14578 df-s2 14831 df-s3 14832 df-trkgc 28251 df-trkgb 28252 df-trkgcb 28253 df-trkg 28256 df-cgrg 28314 |
This theorem is referenced by: mideulem2 28537 opphllem 28538 outpasch 28558 |
Copyright terms: Public domain | W3C validator |