MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  outpasch Structured version   Visualization version   GIF version

Theorem outpasch 28552
Description: Axiom of Pasch, outer form. This was proven by Gupta from other axioms and is therefore presented as Theorem 9.6 in [Schwabhauser] p. 70. (Contributed by Thierry Arnoux, 16-Aug-2020.)
Hypotheses
Ref Expression
outpasch.p 𝑃 = (Base‘𝐺)
outpasch.i 𝐼 = (Itv‘𝐺)
outpasch.l 𝐿 = (LineG‘𝐺)
outpasch.g (𝜑𝐺 ∈ TarskiG)
outpasch.a (𝜑𝐴𝑃)
outpasch.b (𝜑𝐵𝑃)
outpasch.c (𝜑𝐶𝑃)
outpasch.r (𝜑𝑅𝑃)
outpasch.q (𝜑𝑄𝑃)
outpasch.1 (𝜑𝐶 ∈ (𝐴𝐼𝑅))
outpasch.2 (𝜑𝑄 ∈ (𝐵𝐼𝐶))
Assertion
Ref Expression
outpasch (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐺   𝑥,𝐼   𝑥,𝐿   𝑥,𝑃   𝑥,𝑄   𝑥,𝑅   𝜑,𝑥

Proof of Theorem outpasch
Dummy variables 𝑡 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 outpasch.a . . . . . 6 (𝜑𝐴𝑃)
21adantr 480 . . . . 5 ((𝜑𝑄 ∈ (𝑅𝐼𝐶)) → 𝐴𝑃)
3 simpr 484 . . . . . . 7 (((𝜑𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴)
43eleq1d 2814 . . . . . 6 (((𝜑𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑥 = 𝐴) → (𝑥 ∈ (𝐴𝐼𝐵) ↔ 𝐴 ∈ (𝐴𝐼𝐵)))
53oveq2d 7430 . . . . . . 7 (((𝜑𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑥 = 𝐴) → (𝑅𝐼𝑥) = (𝑅𝐼𝐴))
65eleq2d 2815 . . . . . 6 (((𝜑𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑥 = 𝐴) → (𝑄 ∈ (𝑅𝐼𝑥) ↔ 𝑄 ∈ (𝑅𝐼𝐴)))
74, 6anbi12d 631 . . . . 5 (((𝜑𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑥 = 𝐴) → ((𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)) ↔ (𝐴 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝐴))))
8 outpasch.p . . . . . . . 8 𝑃 = (Base‘𝐺)
9 eqid 2728 . . . . . . . 8 (dist‘𝐺) = (dist‘𝐺)
10 outpasch.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
11 outpasch.g . . . . . . . 8 (𝜑𝐺 ∈ TarskiG)
12 outpasch.b . . . . . . . 8 (𝜑𝐵𝑃)
138, 9, 10, 11, 1, 12tgbtwntriv1 28288 . . . . . . 7 (𝜑𝐴 ∈ (𝐴𝐼𝐵))
1413adantr 480 . . . . . 6 ((𝜑𝑄 ∈ (𝑅𝐼𝐶)) → 𝐴 ∈ (𝐴𝐼𝐵))
1511adantr 480 . . . . . . 7 ((𝜑𝑄 ∈ (𝑅𝐼𝐶)) → 𝐺 ∈ TarskiG)
16 outpasch.r . . . . . . . 8 (𝜑𝑅𝑃)
1716adantr 480 . . . . . . 7 ((𝜑𝑄 ∈ (𝑅𝐼𝐶)) → 𝑅𝑃)
18 outpasch.q . . . . . . . 8 (𝜑𝑄𝑃)
1918adantr 480 . . . . . . 7 ((𝜑𝑄 ∈ (𝑅𝐼𝐶)) → 𝑄𝑃)
20 outpasch.c . . . . . . . 8 (𝜑𝐶𝑃)
2120adantr 480 . . . . . . 7 ((𝜑𝑄 ∈ (𝑅𝐼𝐶)) → 𝐶𝑃)
22 simpr 484 . . . . . . 7 ((𝜑𝑄 ∈ (𝑅𝐼𝐶)) → 𝑄 ∈ (𝑅𝐼𝐶))
23 outpasch.1 . . . . . . . . 9 (𝜑𝐶 ∈ (𝐴𝐼𝑅))
248, 9, 10, 11, 1, 20, 16, 23tgbtwncom 28285 . . . . . . . 8 (𝜑𝐶 ∈ (𝑅𝐼𝐴))
2524adantr 480 . . . . . . 7 ((𝜑𝑄 ∈ (𝑅𝐼𝐶)) → 𝐶 ∈ (𝑅𝐼𝐴))
268, 9, 10, 15, 17, 19, 21, 2, 22, 25tgbtwnexch 28295 . . . . . 6 ((𝜑𝑄 ∈ (𝑅𝐼𝐶)) → 𝑄 ∈ (𝑅𝐼𝐴))
2714, 26jca 511 . . . . 5 ((𝜑𝑄 ∈ (𝑅𝐼𝐶)) → (𝐴 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝐴)))
282, 7, 27rspcedvd 3610 . . . 4 ((𝜑𝑄 ∈ (𝑅𝐼𝐶)) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)))
2928adantlr 714 . . 3 (((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝑄 ∈ (𝑅𝐼𝐶)) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)))
3012ad2antrr 725 . . . 4 (((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) → 𝐵𝑃)
31 eleq1 2817 . . . . . 6 (𝑥 = 𝐵 → (𝑥 ∈ (𝐴𝐼𝐵) ↔ 𝐵 ∈ (𝐴𝐼𝐵)))
32 oveq2 7422 . . . . . . 7 (𝑥 = 𝐵 → (𝑅𝐼𝑥) = (𝑅𝐼𝐵))
3332eleq2d 2815 . . . . . 6 (𝑥 = 𝐵 → (𝑄 ∈ (𝑅𝐼𝑥) ↔ 𝑄 ∈ (𝑅𝐼𝐵)))
3431, 33anbi12d 631 . . . . 5 (𝑥 = 𝐵 → ((𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)) ↔ (𝐵 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝐵))))
3534adantl 481 . . . 4 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑥 = 𝐵) → ((𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)) ↔ (𝐵 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝐵))))
368, 9, 10, 11, 1, 12tgbtwntriv2 28284 . . . . . 6 (𝜑𝐵 ∈ (𝐴𝐼𝐵))
3736ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐵))
3811ad3antrrr 729 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑅 ∈ (𝑄𝐼𝐶)) → 𝐺 ∈ TarskiG)
3920ad3antrrr 729 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑅 ∈ (𝑄𝐼𝐶)) → 𝐶𝑃)
4016ad3antrrr 729 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑅 ∈ (𝑄𝐼𝐶)) → 𝑅𝑃)
4118ad3antrrr 729 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑅 ∈ (𝑄𝐼𝐶)) → 𝑄𝑃)
4212ad3antrrr 729 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑅 ∈ (𝑄𝐼𝐶)) → 𝐵𝑃)
43 simpr 484 . . . . . . . 8 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑅 ∈ (𝑄𝐼𝐶)) → 𝑅 ∈ (𝑄𝐼𝐶))
448, 9, 10, 38, 41, 40, 39, 43tgbtwncom 28285 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑅 ∈ (𝑄𝐼𝐶)) → 𝑅 ∈ (𝐶𝐼𝑄))
45 outpasch.2 . . . . . . . . 9 (𝜑𝑄 ∈ (𝐵𝐼𝐶))
468, 9, 10, 11, 12, 18, 20, 45tgbtwncom 28285 . . . . . . . 8 (𝜑𝑄 ∈ (𝐶𝐼𝐵))
4746ad3antrrr 729 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑅 ∈ (𝑄𝐼𝐶)) → 𝑄 ∈ (𝐶𝐼𝐵))
488, 9, 10, 38, 39, 40, 41, 42, 44, 47tgbtwnexch3 28291 . . . . . 6 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑅 ∈ (𝑄𝐼𝐶)) → 𝑄 ∈ (𝑅𝐼𝐵))
4911ad3antrrr 729 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) → 𝐺 ∈ TarskiG)
5012ad3antrrr 729 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) → 𝐵𝑃)
5118ad3antrrr 729 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) → 𝑄𝑃)
5216ad3antrrr 729 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) → 𝑅𝑃)
5320ad3antrrr 729 . . . . . . . 8 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) → 𝐶𝑃)
54 simpr 484 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) ∧ 𝑄 = 𝐶) → 𝑄 = 𝐶)
558, 9, 10, 11, 16, 20tgbtwntriv2 28284 . . . . . . . . . . . 12 (𝜑𝐶 ∈ (𝑅𝐼𝐶))
5655ad4antr 731 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) ∧ 𝑄 = 𝐶) → 𝐶 ∈ (𝑅𝐼𝐶))
5754, 56eqeltrd 2829 . . . . . . . . . 10 (((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) ∧ 𝑄 = 𝐶) → 𝑄 ∈ (𝑅𝐼𝐶))
58 simpllr 775 . . . . . . . . . 10 (((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) ∧ 𝑄 = 𝐶) → ¬ 𝑄 ∈ (𝑅𝐼𝐶))
5957, 58pm2.65da 816 . . . . . . . . 9 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) → ¬ 𝑄 = 𝐶)
6059neqned 2943 . . . . . . . 8 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) → 𝑄𝐶)
6145ad3antrrr 729 . . . . . . . 8 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) → 𝑄 ∈ (𝐵𝐼𝐶))
62 simpr 484 . . . . . . . 8 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) → 𝐶 ∈ (𝑄𝐼𝑅))
638, 9, 10, 49, 50, 51, 53, 52, 60, 61, 62tgbtwnouttr 28294 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) → 𝑄 ∈ (𝐵𝐼𝑅))
648, 9, 10, 49, 50, 51, 52, 63tgbtwncom 28285 . . . . . 6 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) → 𝑄 ∈ (𝑅𝐼𝐵))
65 outpasch.l . . . . . . . . . 10 𝐿 = (LineG‘𝐺)
668, 65, 10, 11, 18, 20, 16tgcolg 28351 . . . . . . . . 9 (𝜑 → ((𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶) ↔ (𝑅 ∈ (𝑄𝐼𝐶) ∨ 𝑄 ∈ (𝑅𝐼𝐶) ∨ 𝐶 ∈ (𝑄𝐼𝑅))))
6766biimpa 476 . . . . . . . 8 ((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → (𝑅 ∈ (𝑄𝐼𝐶) ∨ 𝑄 ∈ (𝑅𝐼𝐶) ∨ 𝐶 ∈ (𝑄𝐼𝑅)))
68 3orcoma 1091 . . . . . . . . 9 ((𝑄 ∈ (𝑅𝐼𝐶) ∨ 𝑅 ∈ (𝑄𝐼𝐶) ∨ 𝐶 ∈ (𝑄𝐼𝑅)) ↔ (𝑅 ∈ (𝑄𝐼𝐶) ∨ 𝑄 ∈ (𝑅𝐼𝐶) ∨ 𝐶 ∈ (𝑄𝐼𝑅)))
69 3orass 1088 . . . . . . . . 9 ((𝑄 ∈ (𝑅𝐼𝐶) ∨ 𝑅 ∈ (𝑄𝐼𝐶) ∨ 𝐶 ∈ (𝑄𝐼𝑅)) ↔ (𝑄 ∈ (𝑅𝐼𝐶) ∨ (𝑅 ∈ (𝑄𝐼𝐶) ∨ 𝐶 ∈ (𝑄𝐼𝑅))))
7068, 69bitr3i 277 . . . . . . . 8 ((𝑅 ∈ (𝑄𝐼𝐶) ∨ 𝑄 ∈ (𝑅𝐼𝐶) ∨ 𝐶 ∈ (𝑄𝐼𝑅)) ↔ (𝑄 ∈ (𝑅𝐼𝐶) ∨ (𝑅 ∈ (𝑄𝐼𝐶) ∨ 𝐶 ∈ (𝑄𝐼𝑅))))
7167, 70sylib 217 . . . . . . 7 ((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → (𝑄 ∈ (𝑅𝐼𝐶) ∨ (𝑅 ∈ (𝑄𝐼𝐶) ∨ 𝐶 ∈ (𝑄𝐼𝑅))))
7271orcanai 1001 . . . . . 6 (((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) → (𝑅 ∈ (𝑄𝐼𝐶) ∨ 𝐶 ∈ (𝑄𝐼𝑅)))
7348, 64, 72mpjaodan 957 . . . . 5 (((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) → 𝑄 ∈ (𝑅𝐼𝐵))
7437, 73jca 511 . . . 4 (((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) → (𝐵 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝐵)))
7530, 35, 74rspcedvd 3610 . . 3 (((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)))
7629, 75pm2.61dan 812 . 2 ((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)))
7712ad2antrr 725 . . . 4 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐵𝑃)
7834adantl 481 . . . 4 ((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 = 𝐵) → ((𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)) ↔ (𝐵 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝐵))))
7936ad2antrr 725 . . . . 5 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐵 ∈ (𝐴𝐼𝐵))
8011ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐺 ∈ TarskiG)
8116ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑅𝑃)
8218ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑄𝑃)
8320ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐶𝑃)
84 simplr 768 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶))
85 simpr 484 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐵 ∈ (𝑅𝐿𝑄))
8611adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝐺 ∈ TarskiG)
8716adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝑅𝑃)
8818adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝑄𝑃)
8920adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝐶𝑃)
90 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶))
918, 10, 65, 86, 87, 88, 89, 90ncolne1 28422 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝑅𝑄)
928, 10, 65, 86, 87, 88, 91tglinerflx2 28431 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝑄 ∈ (𝑅𝐿𝑄))
9392adantr 480 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑄 ∈ (𝑅𝐿𝑄))
948, 65, 10, 86, 88, 89, 87, 90ncolcom 28358 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → ¬ (𝑅 ∈ (𝐶𝐿𝑄) ∨ 𝐶 = 𝑄))
958, 65, 10, 86, 89, 88, 87, 94ncolrot1 28359 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → ¬ (𝐶 ∈ (𝑄𝐿𝑅) ∨ 𝑄 = 𝑅))
968, 10, 65, 86, 89, 88, 87, 95ncolne1 28422 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝐶𝑄)
9796adantr 480 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐶𝑄)
9846ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑄 ∈ (𝐶𝐼𝐵))
998, 10, 65, 80, 83, 82, 77, 97, 98btwnlng3 28418 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐵 ∈ (𝐶𝐿𝑄))
1008, 10, 65, 80, 83, 82, 97tglinerflx2 28431 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑄 ∈ (𝐶𝐿𝑄))
1018, 10, 65, 80, 81, 82, 83, 82, 84, 85, 93, 99, 100tglineinteq 28442 . . . . . 6 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐵 = 𝑄)
1028, 9, 10, 11, 16, 12tgbtwntriv2 28284 . . . . . . 7 (𝜑𝐵 ∈ (𝑅𝐼𝐵))
103102ad2antrr 725 . . . . . 6 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐵 ∈ (𝑅𝐼𝐵))
104101, 103eqeltrrd 2830 . . . . 5 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑄 ∈ (𝑅𝐼𝐵))
10579, 104jca 511 . . . 4 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → (𝐵 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝐵)))
10677, 78, 105rspcedvd 3610 . . 3 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)))
107 eleq1 2817 . . . . . . . . . 10 (𝑡 = 𝑥 → (𝑡 ∈ (𝑎𝐼𝑏) ↔ 𝑥 ∈ (𝑎𝐼𝑏)))
108107cbvrexvw 3231 . . . . . . . . 9 (∃𝑡 ∈ (𝑅𝐿𝑄)𝑡 ∈ (𝑎𝐼𝑏) ↔ ∃𝑥 ∈ (𝑅𝐿𝑄)𝑥 ∈ (𝑎𝐼𝑏))
109108anbi2i 622 . . . . . . . 8 (((𝑎 ∈ (𝑃 ∖ (𝑅𝐿𝑄)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑅𝐿𝑄))) ∧ ∃𝑡 ∈ (𝑅𝐿𝑄)𝑡 ∈ (𝑎𝐼𝑏)) ↔ ((𝑎 ∈ (𝑃 ∖ (𝑅𝐿𝑄)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑅𝐿𝑄))) ∧ ∃𝑥 ∈ (𝑅𝐿𝑄)𝑥 ∈ (𝑎𝐼𝑏)))
110109opabbii 5209 . . . . . . 7 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝑅𝐿𝑄)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑅𝐿𝑄))) ∧ ∃𝑡 ∈ (𝑅𝐿𝑄)𝑡 ∈ (𝑎𝐼𝑏))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝑅𝐿𝑄)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑅𝐿𝑄))) ∧ ∃𝑥 ∈ (𝑅𝐿𝑄)𝑥 ∈ (𝑎𝐼𝑏))}
11111ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐺 ∈ TarskiG)
11216ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑅𝑃)
11318ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑄𝑃)
11491adantr 480 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑅𝑄)
1158, 10, 65, 111, 112, 113, 114tgelrnln 28427 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → (𝑅𝐿𝑄) ∈ ran 𝐿)
116 eqid 2728 . . . . . . 7 (hlG‘𝐺) = (hlG‘𝐺)
11720ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐶𝑃)
1181ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐴𝑃)
11912ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐵𝑃)
12092adantr 480 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑄 ∈ (𝑅𝐿𝑄))
1218, 65, 10, 86, 88, 89, 87, 90ncolrot2 28360 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → ¬ (𝐶 ∈ (𝑅𝐿𝑄) ∨ 𝑅 = 𝑄))
122 pm2.45 880 . . . . . . . . . 10 (¬ (𝐶 ∈ (𝑅𝐿𝑄) ∨ 𝑅 = 𝑄) → ¬ 𝐶 ∈ (𝑅𝐿𝑄))
123121, 122syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → ¬ 𝐶 ∈ (𝑅𝐿𝑄))
124123adantr 480 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → ¬ 𝐶 ∈ (𝑅𝐿𝑄))
125 simpr 484 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → ¬ 𝐵 ∈ (𝑅𝐿𝑄))
12646ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑄 ∈ (𝐶𝐼𝐵))
1278, 9, 10, 110, 117, 119, 120, 124, 125, 126islnoppd 28537 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐶{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝑅𝐿𝑄)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑅𝐿𝑄))) ∧ ∃𝑡 ∈ (𝑅𝐿𝑄)𝑡 ∈ (𝑎𝐼𝑏))}𝐵)
1288, 10, 65, 86, 87, 88, 91tglinerflx1 28430 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝑅 ∈ (𝑅𝐿𝑄))
129128adantr 480 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑅 ∈ (𝑅𝐿𝑄))
13024ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐶 ∈ (𝑅𝐼𝐴))
1318, 10, 65, 86, 89, 87, 88, 121ncolne1 28422 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝐶𝑅)
132131adantr 480 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐶𝑅)
1338, 9, 10, 111, 112, 117, 118, 130, 132tgbtwnne 28287 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑅𝐴)
1348, 10, 116, 112, 118, 117, 111, 118, 130, 133, 132btwnhl1 28409 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐶((hlG‘𝐺)‘𝑅)𝐴)
1358, 9, 10, 110, 65, 115, 111, 116, 117, 118, 119, 127, 129, 134opphl 28551 . . . . . 6 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐴{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝑅𝐿𝑄)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑅𝐿𝑄))) ∧ ∃𝑡 ∈ (𝑅𝐿𝑄)𝑡 ∈ (𝑎𝐼𝑏))}𝐵)
1368, 9, 10, 110, 118, 119islnopp 28536 . . . . . 6 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → (𝐴{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝑅𝐿𝑄)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑅𝐿𝑄))) ∧ ∃𝑡 ∈ (𝑅𝐿𝑄)𝑡 ∈ (𝑎𝐼𝑏))}𝐵 ↔ ((¬ 𝐴 ∈ (𝑅𝐿𝑄) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ ∃𝑥 ∈ (𝑅𝐿𝑄)𝑥 ∈ (𝐴𝐼𝐵))))
137135, 136mpbid 231 . . . . 5 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → ((¬ 𝐴 ∈ (𝑅𝐿𝑄) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ ∃𝑥 ∈ (𝑅𝐿𝑄)𝑥 ∈ (𝐴𝐼𝐵)))
138137simprd 495 . . . 4 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → ∃𝑥 ∈ (𝑅𝐿𝑄)𝑥 ∈ (𝐴𝐼𝐵))
139111ad2antrr 725 . . . . . . . 8 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG)
140115ad2antrr 725 . . . . . . . 8 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → (𝑅𝐿𝑄) ∈ ran 𝐿)
141 simplr 768 . . . . . . . 8 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → 𝑥 ∈ (𝑅𝐿𝑄))
1428, 65, 10, 139, 140, 141tglnpt 28346 . . . . . . 7 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → 𝑥𝑃)
143 simpr 484 . . . . . . 7 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → 𝑥 ∈ (𝐴𝐼𝐵))
144139ad2antrr 725 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝐺 ∈ TarskiG)
14587ad3antrrr 729 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → 𝑅𝑃)
146145ad2antrr 725 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑅𝑃)
14788ad5antr 733 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑄𝑃)
148117ad2antrr 725 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → 𝐶𝑃)
149148ad2antrr 725 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝐶𝑃)
15090ad5antr 733 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶))
151 simplr 768 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑡𝑃)
152114ad4antr 731 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑅𝑄)
153142ad2antrr 725 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑥𝑃)
15491necomd 2992 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝑄𝑅)
155154ad5antr 733 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑄𝑅)
156141ad2antrr 725 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑥 ∈ (𝑅𝐿𝑄))
1578, 10, 65, 144, 147, 146, 153, 155, 156lncom 28419 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑥 ∈ (𝑄𝐿𝑅))
158 simprl 770 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑡 ∈ (𝑥𝐼𝑅))
1598, 10, 65, 144, 153, 147, 146, 151, 157, 158coltr3 28445 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑡 ∈ (𝑄𝐿𝑅))
1608, 10, 65, 144, 146, 147, 151, 152, 159lncom 28419 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑡 ∈ (𝑅𝐿𝑄))
16192ad5antr 733 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑄 ∈ (𝑅𝐿𝑄))
16296ad5antr 733 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝐶𝑄)
163119ad2antrr 725 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → 𝐵𝑃)
164163ad2antrr 725 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝐵𝑃)
16512adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝐵𝑃)
16696necomd 2992 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝑄𝐶)
16745adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝑄 ∈ (𝐵𝐼𝐶))
1688, 10, 65, 86, 88, 89, 165, 166, 167btwnlng2 28417 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝐵 ∈ (𝑄𝐿𝐶))
169168ad5antr 733 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝐵 ∈ (𝑄𝐿𝐶))
170 simprr 772 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑡 ∈ (𝐶𝐼𝐵))
1718, 9, 10, 144, 149, 151, 164, 170tgbtwncom 28285 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑡 ∈ (𝐵𝐼𝐶))
1728, 10, 65, 144, 164, 147, 149, 151, 169, 171coltr3 28445 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑡 ∈ (𝑄𝐿𝐶))
1738, 10, 65, 144, 149, 147, 151, 162, 172lncom 28419 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑡 ∈ (𝐶𝐿𝑄))
1748, 10, 65, 86, 89, 88, 96tglinerflx2 28431 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝑄 ∈ (𝐶𝐿𝑄))
175174ad5antr 733 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑄 ∈ (𝐶𝐿𝑄))
1768, 10, 65, 144, 146, 147, 149, 147, 150, 160, 161, 173, 175tglineinteq 28442 . . . . . . . . 9 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑡 = 𝑄)
1778, 9, 10, 144, 153, 151, 146, 158tgbtwncom 28285 . . . . . . . . 9 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑡 ∈ (𝑅𝐼𝑥))
178176, 177eqeltrrd 2830 . . . . . . . 8 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑄 ∈ (𝑅𝐼𝑥))
179118ad2antrr 725 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → 𝐴𝑃)
1808, 9, 10, 139, 179, 142, 163, 143tgbtwncom 28285 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → 𝑥 ∈ (𝐵𝐼𝐴))
18124ad4antr 731 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝑅𝐼𝐴))
1828, 9, 10, 139, 163, 145, 179, 142, 148, 180, 181axtgpasch 28264 . . . . . . . 8 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → ∃𝑡𝑃 (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵)))
183178, 182r19.29a 3158 . . . . . . 7 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → 𝑄 ∈ (𝑅𝐼𝑥))
184142, 143, 183jca32 515 . . . . . 6 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥))))
185184expl 457 . . . . 5 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → ((𝑥 ∈ (𝑅𝐿𝑄) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)))))
186185reximdv2 3160 . . . 4 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → (∃𝑥 ∈ (𝑅𝐿𝑄)𝑥 ∈ (𝐴𝐼𝐵) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥))))
187138, 186mpd 15 . . 3 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)))
188106, 187pm2.61dan 812 . 2 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)))
18976, 188pm2.61dan 812 1 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846  w3o 1084   = wceq 1534  wcel 2099  wne 2936  wrex 3066  cdif 3942   class class class wbr 5142  {copab 5204  ran crn 5673  cfv 6542  (class class class)co 7414  Basecbs 17173  distcds 17235  TarskiGcstrkg 28224  Itvcitv 28230  LineGclng 28231  hlGchlg 28397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8718  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-dju 9918  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-n0 12497  df-xnn0 12569  df-z 12583  df-uz 12847  df-fz 13511  df-fzo 13654  df-hash 14316  df-word 14491  df-concat 14547  df-s1 14572  df-s2 14825  df-s3 14826  df-trkgc 28245  df-trkgb 28246  df-trkgcb 28247  df-trkgld 28249  df-trkg 28250  df-cgrg 28308  df-leg 28380  df-hlg 28398  df-mir 28450  df-rag 28491  df-perpg 28493
This theorem is referenced by:  hlpasch  28553
  Copyright terms: Public domain W3C validator
OSZAR »