![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trljco2 | Structured version Visualization version GIF version |
Description: Trace joined with trace of composition. (Contributed by NM, 16-Jun-2013.) |
Ref | Expression |
---|---|
trljco.j | ⊢ ∨ = (join‘𝐾) |
trljco.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trljco.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trljco.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trljco2 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺))) = ((𝑅‘𝐺) ∨ (𝑅‘(𝐹 ∘ 𝐺)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1194 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → 𝐾 ∈ HL) | |
2 | 1 | hllatd 38840 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → 𝐾 ∈ Lat) |
3 | eqid 2727 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | trljco.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | trljco.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
6 | trljco.r | . . . . . 6 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
7 | 3, 4, 5, 6 | trlcl 39641 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ (Base‘𝐾)) |
8 | 7 | 3adant3 1129 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐹) ∈ (Base‘𝐾)) |
9 | 3, 4, 5, 6 | trlcl 39641 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐺) ∈ (Base‘𝐾)) |
10 | 9 | 3adant2 1128 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐺) ∈ (Base‘𝐾)) |
11 | trljco.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
12 | 3, 11 | latjcom 18444 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑅‘𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘𝐺) ∈ (Base‘𝐾)) → ((𝑅‘𝐹) ∨ (𝑅‘𝐺)) = ((𝑅‘𝐺) ∨ (𝑅‘𝐹))) |
13 | 2, 8, 10, 12 | syl3anc 1368 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘𝐺)) = ((𝑅‘𝐺) ∨ (𝑅‘𝐹))) |
14 | 11, 4, 5, 6 | trljco 40217 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ 𝐹))) = ((𝑅‘𝐺) ∨ (𝑅‘𝐹))) |
15 | 14 | 3com23 1123 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ 𝐹))) = ((𝑅‘𝐺) ∨ (𝑅‘𝐹))) |
16 | 13, 15 | eqtr4d 2770 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘𝐺)) = ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ 𝐹)))) |
17 | 11, 4, 5, 6 | trljco 40217 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺))) = ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) |
18 | 4, 5 | ltrncom 40215 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
19 | 18 | fveq2d 6904 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘(𝐹 ∘ 𝐺)) = (𝑅‘(𝐺 ∘ 𝐹))) |
20 | 19 | oveq2d 7440 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐺) ∨ (𝑅‘(𝐹 ∘ 𝐺))) = ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ 𝐹)))) |
21 | 16, 17, 20 | 3eqtr4d 2777 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺))) = ((𝑅‘𝐺) ∨ (𝑅‘(𝐹 ∘ 𝐺)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∘ ccom 5684 ‘cfv 6551 (class class class)co 7424 Basecbs 17185 joincjn 18308 Latclat 18428 HLchlt 38826 LHypclh 39461 LTrncltrn 39578 trLctrl 39635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-riotaBAD 38429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-iin 5001 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-1st 7997 df-2nd 7998 df-undef 8283 df-map 8851 df-proset 18292 df-poset 18310 df-plt 18327 df-lub 18343 df-glb 18344 df-join 18345 df-meet 18346 df-p0 18422 df-p1 18423 df-lat 18429 df-clat 18496 df-oposet 38652 df-ol 38654 df-oml 38655 df-covers 38742 df-ats 38743 df-atl 38774 df-cvlat 38798 df-hlat 38827 df-llines 38975 df-lplanes 38976 df-lvols 38977 df-lines 38978 df-psubsp 38980 df-pmap 38981 df-padd 39273 df-lhyp 39465 df-laut 39466 df-ldil 39581 df-ltrn 39582 df-trl 39636 |
This theorem is referenced by: cdlemh1 40292 |
Copyright terms: Public domain | W3C validator |