Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemh1 Structured version   Visualization version   GIF version

Theorem cdlemh1 40288
Description: Part of proof of Lemma H of [Crawley] p. 118. (Contributed by NM, 17-Jun-2013.)
Hypotheses
Ref Expression
cdlemh.b 𝐵 = (Base‘𝐾)
cdlemh.l = (le‘𝐾)
cdlemh.j = (join‘𝐾)
cdlemh.m = (meet‘𝐾)
cdlemh.a 𝐴 = (Atoms‘𝐾)
cdlemh.h 𝐻 = (LHyp‘𝐾)
cdlemh.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemh.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemh.s 𝑆 = ((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹))))
Assertion
Ref Expression
cdlemh1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑆 (𝑅‘(𝐺𝐹))) = (𝑄 (𝑅‘(𝐺𝐹))))

Proof of Theorem cdlemh1
StepHypRef Expression
1 cdlemh.s . . 3 𝑆 = ((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹))))
21oveq1i 7430 . 2 (𝑆 (𝑅‘(𝐺𝐹))) = (((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) (𝑅‘(𝐺𝐹)))
3 simp11l 1282 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ HL)
4 simp11 1201 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5 simp13 1203 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺𝑇)
6 simp12 1202 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
7 simp3r 1200 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅𝐺))
87necomd 2993 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ≠ (𝑅𝐹))
9 cdlemh.a . . . . . 6 𝐴 = (Atoms‘𝐾)
10 cdlemh.h . . . . . 6 𝐻 = (LHyp‘𝐾)
11 cdlemh.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
12 cdlemh.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
139, 10, 11, 12trlcocnvat 40197 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐹𝑇) ∧ (𝑅𝐺) ≠ (𝑅𝐹)) → (𝑅‘(𝐺𝐹)) ∈ 𝐴)
144, 5, 6, 8, 13syl121anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐺𝐹)) ∈ 𝐴)
153hllatd 38836 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ Lat)
16 simp2l 1197 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑃𝐴)
17 cdlemh.b . . . . . . 7 𝐵 = (Base‘𝐾)
1817, 9atbase 38761 . . . . . 6 (𝑃𝐴𝑃𝐵)
1916, 18syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑃𝐵)
2017, 10, 11, 12trlcl 39637 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ 𝐵)
214, 5, 20syl2anc 583 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ∈ 𝐵)
22 cdlemh.j . . . . . 6 = (join‘𝐾)
2317, 22latjcl 18431 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ (𝑅𝐺) ∈ 𝐵) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
2415, 19, 21, 23syl3anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
25 simp2r 1198 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑄𝐴)
2617, 22, 9hlatjcl 38839 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐴) → (𝑄 (𝑅‘(𝐺𝐹))) ∈ 𝐵)
273, 25, 14, 26syl3anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑄 (𝑅‘(𝐺𝐹))) ∈ 𝐵)
28 cdlemh.l . . . . . 6 = (le‘𝐾)
2928, 22, 9hlatlej2 38848 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐴) → (𝑅‘(𝐺𝐹)) (𝑄 (𝑅‘(𝐺𝐹))))
303, 25, 14, 29syl3anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐺𝐹)) (𝑄 (𝑅‘(𝐺𝐹))))
31 cdlemh.m . . . . 5 = (meet‘𝐾)
3217, 28, 22, 31, 9atmod4i1 39339 . . . 4 ((𝐾 ∈ HL ∧ ((𝑅‘(𝐺𝐹)) ∈ 𝐴 ∧ (𝑃 (𝑅𝐺)) ∈ 𝐵 ∧ (𝑄 (𝑅‘(𝐺𝐹))) ∈ 𝐵) ∧ (𝑅‘(𝐺𝐹)) (𝑄 (𝑅‘(𝐺𝐹)))) → (((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) (𝑅‘(𝐺𝐹))) = (((𝑃 (𝑅𝐺)) (𝑅‘(𝐺𝐹))) (𝑄 (𝑅‘(𝐺𝐹)))))
333, 14, 24, 27, 30, 32syl131anc 1381 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) (𝑅‘(𝐺𝐹))) = (((𝑃 (𝑅𝐺)) (𝑅‘(𝐺𝐹))) (𝑄 (𝑅‘(𝐺𝐹)))))
3410, 11ltrncnv 39619 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
354, 6, 34syl2anc 583 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
3622, 10, 11, 12trljco2 40214 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐹𝑇) → ((𝑅𝐺) (𝑅‘(𝐺𝐹))) = ((𝑅𝐹) (𝑅‘(𝐺𝐹))))
374, 5, 35, 36syl3anc 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑅𝐺) (𝑅‘(𝐺𝐹))) = ((𝑅𝐹) (𝑅‘(𝐺𝐹))))
3810, 11, 12trlcnv 39638 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
394, 6, 38syl2anc 583 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) = (𝑅𝐹))
4039oveq1d 7435 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑅𝐹) (𝑅‘(𝐺𝐹))) = ((𝑅𝐹) (𝑅‘(𝐺𝐹))))
4137, 40eqtrd 2768 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑅𝐺) (𝑅‘(𝐺𝐹))) = ((𝑅𝐹) (𝑅‘(𝐺𝐹))))
4241oveq2d 7436 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑃 ((𝑅𝐺) (𝑅‘(𝐺𝐹)))) = (𝑃 ((𝑅𝐹) (𝑅‘(𝐺𝐹)))))
4310, 11ltrnco 40192 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐹𝑇) → (𝐺𝐹) ∈ 𝑇)
444, 5, 35, 43syl3anc 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐺𝐹) ∈ 𝑇)
4517, 10, 11, 12trlcl 39637 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇) → (𝑅‘(𝐺𝐹)) ∈ 𝐵)
464, 44, 45syl2anc 583 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐺𝐹)) ∈ 𝐵)
4717, 22latjass 18475 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃𝐵 ∧ (𝑅𝐺) ∈ 𝐵 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐵)) → ((𝑃 (𝑅𝐺)) (𝑅‘(𝐺𝐹))) = (𝑃 ((𝑅𝐺) (𝑅‘(𝐺𝐹)))))
4815, 19, 21, 46, 47syl13anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑃 (𝑅𝐺)) (𝑅‘(𝐺𝐹))) = (𝑃 ((𝑅𝐺) (𝑅‘(𝐺𝐹)))))
4917, 10, 11, 12trlcl 39637 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ 𝐵)
504, 6, 49syl2anc 583 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ∈ 𝐵)
5117, 22latjass 18475 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃𝐵 ∧ (𝑅𝐹) ∈ 𝐵 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐵)) → ((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))) = (𝑃 ((𝑅𝐹) (𝑅‘(𝐺𝐹)))))
5215, 19, 50, 46, 51syl13anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))) = (𝑃 ((𝑅𝐹) (𝑅‘(𝐺𝐹)))))
5342, 48, 523eqtr4d 2778 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑃 (𝑅𝐺)) (𝑅‘(𝐺𝐹))) = ((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))))
5453oveq1d 7435 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑃 (𝑅𝐺)) (𝑅‘(𝐺𝐹))) (𝑄 (𝑅‘(𝐺𝐹)))) = (((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))) (𝑄 (𝑅‘(𝐺𝐹)))))
55 simp3l 1199 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑄 (𝑃 (𝑅𝐹)))
5617, 9atbase 38761 . . . . . . 7 (𝑄𝐴𝑄𝐵)
5725, 56syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑄𝐵)
5817, 22latjcl 18431 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ (𝑅𝐹) ∈ 𝐵) → (𝑃 (𝑅𝐹)) ∈ 𝐵)
5915, 19, 50, 58syl3anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑃 (𝑅𝐹)) ∈ 𝐵)
6017, 28, 22latjlej1 18445 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄𝐵 ∧ (𝑃 (𝑅𝐹)) ∈ 𝐵 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐵)) → (𝑄 (𝑃 (𝑅𝐹)) → (𝑄 (𝑅‘(𝐺𝐹))) ((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹)))))
6115, 57, 59, 46, 60syl13anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑄 (𝑃 (𝑅𝐹)) → (𝑄 (𝑅‘(𝐺𝐹))) ((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹)))))
6255, 61mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑄 (𝑅‘(𝐺𝐹))) ((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))))
6317, 22latjcl 18431 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 (𝑅𝐹)) ∈ 𝐵 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐵) → ((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))) ∈ 𝐵)
6415, 59, 46, 63syl3anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))) ∈ 𝐵)
6517, 28, 31latleeqm2 18460 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 (𝑅‘(𝐺𝐹))) ∈ 𝐵 ∧ ((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))) ∈ 𝐵) → ((𝑄 (𝑅‘(𝐺𝐹))) ((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))) ↔ (((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))) (𝑄 (𝑅‘(𝐺𝐹)))) = (𝑄 (𝑅‘(𝐺𝐹)))))
6615, 27, 64, 65syl3anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑄 (𝑅‘(𝐺𝐹))) ((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))) ↔ (((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))) (𝑄 (𝑅‘(𝐺𝐹)))) = (𝑄 (𝑅‘(𝐺𝐹)))))
6762, 66mpbid 231 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))) (𝑄 (𝑅‘(𝐺𝐹)))) = (𝑄 (𝑅‘(𝐺𝐹))))
6833, 54, 673eqtrd 2772 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) (𝑅‘(𝐺𝐹))) = (𝑄 (𝑅‘(𝐺𝐹))))
692, 68eqtrid 2780 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑆 (𝑅‘(𝐺𝐹))) = (𝑄 (𝑅‘(𝐺𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2937   class class class wbr 5148  ccnv 5677  ccom 5682  cfv 6548  (class class class)co 7420  Basecbs 17180  lecple 17240  joincjn 18303  meetcmee 18304  Latclat 18423  Atomscatm 38735  HLchlt 38822  LHypclh 39457  LTrncltrn 39574  trLctrl 39631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-riotaBAD 38425
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-undef 8279  df-map 8847  df-proset 18287  df-poset 18305  df-plt 18322  df-lub 18338  df-glb 18339  df-join 18340  df-meet 18341  df-p0 18417  df-p1 18418  df-lat 18424  df-clat 18491  df-oposet 38648  df-ol 38650  df-oml 38651  df-covers 38738  df-ats 38739  df-atl 38770  df-cvlat 38794  df-hlat 38823  df-llines 38971  df-lplanes 38972  df-lvols 38973  df-lines 38974  df-psubsp 38976  df-pmap 38977  df-padd 39269  df-lhyp 39461  df-laut 39462  df-ldil 39577  df-ltrn 39578  df-trl 39632
This theorem is referenced by:  cdlemh  40290
  Copyright terms: Public domain W3C validator
OSZAR »