MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubmelm1fzo Structured version   Visualization version   GIF version

Theorem ubmelm1fzo 13760
Description: The result of subtracting 1 and an integer of a half-open range of nonnegative integers from the upper bound of this range is contained in this range. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 30-Oct-2018.)
Assertion
Ref Expression
ubmelm1fzo (𝐾 ∈ (0..^𝑁) → ((𝑁𝐾) − 1) ∈ (0..^𝑁))

Proof of Theorem ubmelm1fzo
StepHypRef Expression
1 elfzo0 13705 . 2 (𝐾 ∈ (0..^𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2 nnz 12609 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
32adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℤ)
4 nn0z 12613 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
54adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℤ)
63, 5zsubcld 12701 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑁𝐾) ∈ ℤ)
76ancoms 458 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝑁𝐾) ∈ ℤ)
8 peano2zm 12635 . . . . . 6 ((𝑁𝐾) ∈ ℤ → ((𝑁𝐾) − 1) ∈ ℤ)
97, 8syl 17 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((𝑁𝐾) − 1) ∈ ℤ)
1093adant3 1130 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁𝐾) − 1) ∈ ℤ)
11 simp3 1136 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁)
124, 2anim12i 612 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
13123adant3 1130 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
14 znnsub 12638 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ (𝑁𝐾) ∈ ℕ))
1513, 14syl 17 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐾 < 𝑁 ↔ (𝑁𝐾) ∈ ℕ))
1611, 15mpbid 231 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝑁𝐾) ∈ ℕ)
17 nnm1ge0 12660 . . . . 5 ((𝑁𝐾) ∈ ℕ → 0 ≤ ((𝑁𝐾) − 1))
1816, 17syl 17 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 0 ≤ ((𝑁𝐾) − 1))
19 elnn0z 12601 . . . 4 (((𝑁𝐾) − 1) ∈ ℕ0 ↔ (((𝑁𝐾) − 1) ∈ ℤ ∧ 0 ≤ ((𝑁𝐾) − 1)))
2010, 18, 19sylanbrc 582 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁𝐾) − 1) ∈ ℕ0)
21 simp2 1135 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ)
22 nncn 12250 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2322adantl 481 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
24 nn0cn 12512 . . . . . . 7 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
2524adantr 480 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝐾 ∈ ℂ)
26 1cnd 11239 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 1 ∈ ℂ)
2723, 25, 26subsub4d 11632 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((𝑁𝐾) − 1) = (𝑁 − (𝐾 + 1)))
28 nn0p1gt0 12531 . . . . . . 7 (𝐾 ∈ ℕ0 → 0 < (𝐾 + 1))
2928adantr 480 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 0 < (𝐾 + 1))
30 nn0re 12511 . . . . . . . 8 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
31 peano2re 11417 . . . . . . . 8 (𝐾 ∈ ℝ → (𝐾 + 1) ∈ ℝ)
3230, 31syl 17 . . . . . . 7 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℝ)
33 nnre 12249 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
34 ltsubpos 11736 . . . . . . 7 (((𝐾 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < (𝐾 + 1) ↔ (𝑁 − (𝐾 + 1)) < 𝑁))
3532, 33, 34syl2an 595 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (0 < (𝐾 + 1) ↔ (𝑁 − (𝐾 + 1)) < 𝑁))
3629, 35mpbid 231 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝑁 − (𝐾 + 1)) < 𝑁)
3727, 36eqbrtrd 5170 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((𝑁𝐾) − 1) < 𝑁)
38373adant3 1130 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁𝐾) − 1) < 𝑁)
39 elfzo0 13705 . . 3 (((𝑁𝐾) − 1) ∈ (0..^𝑁) ↔ (((𝑁𝐾) − 1) ∈ ℕ0𝑁 ∈ ℕ ∧ ((𝑁𝐾) − 1) < 𝑁))
4020, 21, 38, 39syl3anbrc 1341 . 2 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁𝐾) − 1) ∈ (0..^𝑁))
411, 40sylbi 216 1 (𝐾 ∈ (0..^𝑁) → ((𝑁𝐾) − 1) ∈ (0..^𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wcel 2099   class class class wbr 5148  (class class class)co 7420  cc 11136  cr 11137  0cc0 11138  1c1 11139   + caddc 11141   < clt 11278  cle 11279  cmin 11474  cn 12242  0cn0 12502  cz 12588  ..^cfzo 13659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517  df-fzo 13660
This theorem is referenced by:  repswrevw  14769  cshwidxm1  14789  pwdif  15846  revpfxsfxrev  34725  revwlk  34734
  Copyright terms: Public domain W3C validator
OSZAR »