![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrwlkvtxedg | Structured version Visualization version GIF version |
Description: The pairs of connected vertices of a walk are edges in a pseudograph. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.) |
Ref | Expression |
---|---|
wlkvtxedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
upgrwlkvtxedg | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2728 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 1, 2 | upgriswlk 29468 | . . 3 ⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
4 | wlkvtxedg.e | . . . . . . . . . . 11 ⊢ 𝐸 = (Edg‘𝐺) | |
5 | 2, 4 | upgredginwlk 29463 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (𝑘 ∈ (0..^(♯‘𝐹)) → ((iEdg‘𝐺)‘(𝐹‘𝑘)) ∈ 𝐸)) |
6 | 5 | ancoms 458 | . . . . . . . . 9 ⊢ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (𝑘 ∈ (0..^(♯‘𝐹)) → ((iEdg‘𝐺)‘(𝐹‘𝑘)) ∈ 𝐸)) |
7 | 6 | imp 406 | . . . . . . . 8 ⊢ (((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹‘𝑘)) ∈ 𝐸) |
8 | eleq1 2817 | . . . . . . . . 9 ⊢ ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = ((iEdg‘𝐺)‘(𝐹‘𝑘)) → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ ((iEdg‘𝐺)‘(𝐹‘𝑘)) ∈ 𝐸)) | |
9 | 8 | eqcoms 2736 | . . . . . . . 8 ⊢ (((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ ((iEdg‘𝐺)‘(𝐹‘𝑘)) ∈ 𝐸)) |
10 | 7, 9 | syl5ibrcom 246 | . . . . . . 7 ⊢ (((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸)) |
11 | 10 | ralimdva 3164 | . . . . . 6 ⊢ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸)) |
12 | 11 | impancom 451 | . . . . 5 ⊢ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (𝐺 ∈ UPGraph → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸)) |
13 | 12 | 3adant2 1129 | . . . 4 ⊢ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (𝐺 ∈ UPGraph → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸)) |
14 | 13 | com12 32 | . . 3 ⊢ (𝐺 ∈ UPGraph → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸)) |
15 | 3, 14 | sylbid 239 | . 2 ⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸)) |
16 | 15 | imp 406 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∀wral 3058 {cpr 4631 class class class wbr 5148 dom cdm 5678 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 0cc0 11139 1c1 11140 + caddc 11142 ...cfz 13517 ..^cfzo 13660 ♯chash 14322 Word cword 14497 Vtxcvtx 28822 iEdgciedg 28823 Edgcedg 28873 UPGraphcupgr 28906 Walkscwlks 29423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-ifp 1062 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9925 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-n0 12504 df-xnn0 12576 df-z 12590 df-uz 12854 df-fz 13518 df-fzo 13661 df-hash 14323 df-word 14498 df-edg 28874 df-uhgr 28884 df-upgr 28908 df-wlks 29426 |
This theorem is referenced by: umgrwlknloop 29476 wlknewwlksn 29711 upgr3v3e3cycl 30003 upgr4cycl4dv4e 30008 |
Copyright terms: Public domain | W3C validator |