![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uspgropssxp | Structured version Visualization version GIF version |
Description: The set 𝐺 of "simple pseudographs" for a fixed set 𝑉 of vertices is a subset of a Cartesian product. For more details about the class 𝐺 of all "simple pseudographs" see comments on uspgrbisymrel 47294. (Contributed by AV, 24-Nov-2021.) |
Ref | Expression |
---|---|
uspgrsprf.p | ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) |
uspgrsprf.g | ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} |
Ref | Expression |
---|---|
uspgropssxp | ⊢ (𝑉 ∈ 𝑊 → 𝐺 ⊆ (𝑊 × 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrsprf.g | . 2 ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} | |
2 | eleq1 2817 | . . . . . 6 ⊢ (𝑉 = 𝑣 → (𝑉 ∈ 𝑊 ↔ 𝑣 ∈ 𝑊)) | |
3 | 2 | eqcoms 2736 | . . . . 5 ⊢ (𝑣 = 𝑉 → (𝑉 ∈ 𝑊 ↔ 𝑣 ∈ 𝑊)) |
4 | 3 | adantr 479 | . . . 4 ⊢ ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → (𝑉 ∈ 𝑊 ↔ 𝑣 ∈ 𝑊)) |
5 | 4 | biimpac 477 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → 𝑣 ∈ 𝑊) |
6 | uspgrupgr 29011 | . . . . . . . . . . . 12 ⊢ (𝑞 ∈ USPGraph → 𝑞 ∈ UPGraph) | |
7 | upgredgssspr 47283 | . . . . . . . . . . . 12 ⊢ (𝑞 ∈ UPGraph → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞))) | |
8 | 6, 7 | syl 17 | . . . . . . . . . . 11 ⊢ (𝑞 ∈ USPGraph → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞))) |
9 | 8 | 3ad2ant1 1130 | . . . . . . . . . 10 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞))) |
10 | simp2l 1196 | . . . . . . . . . . . 12 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Vtx‘𝑞) = 𝑣) | |
11 | simp3 1135 | . . . . . . . . . . . 12 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑣 = 𝑉) | |
12 | 10, 11 | eqtrd 2768 | . . . . . . . . . . 11 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Vtx‘𝑞) = 𝑉) |
13 | 12 | fveq2d 6906 | . . . . . . . . . 10 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Pairs‘(Vtx‘𝑞)) = (Pairs‘𝑉)) |
14 | 9, 13 | sseqtrd 4022 | . . . . . . . . 9 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Edg‘𝑞) ⊆ (Pairs‘𝑉)) |
15 | fvex 6915 | . . . . . . . . . 10 ⊢ (Edg‘𝑞) ∈ V | |
16 | 15 | elpw 4610 | . . . . . . . . 9 ⊢ ((Edg‘𝑞) ∈ 𝒫 (Pairs‘𝑉) ↔ (Edg‘𝑞) ⊆ (Pairs‘𝑉)) |
17 | 14, 16 | sylibr 233 | . . . . . . . 8 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Edg‘𝑞) ∈ 𝒫 (Pairs‘𝑉)) |
18 | simpr 483 | . . . . . . . . . 10 ⊢ (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (Edg‘𝑞) = 𝑒) | |
19 | 18 | eqcomd 2734 | . . . . . . . . 9 ⊢ (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → 𝑒 = (Edg‘𝑞)) |
20 | 19 | 3ad2ant2 1131 | . . . . . . . 8 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑒 = (Edg‘𝑞)) |
21 | uspgrsprf.p | . . . . . . . . 9 ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) | |
22 | 21 | a1i 11 | . . . . . . . 8 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑃 = 𝒫 (Pairs‘𝑉)) |
23 | 17, 20, 22 | 3eltr4d 2844 | . . . . . . 7 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑒 ∈ 𝑃) |
24 | 23 | 3exp 1116 | . . . . . 6 ⊢ (𝑞 ∈ USPGraph → (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (𝑣 = 𝑉 → 𝑒 ∈ 𝑃))) |
25 | 24 | rexlimiv 3145 | . . . . 5 ⊢ (∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (𝑣 = 𝑉 → 𝑒 ∈ 𝑃)) |
26 | 25 | impcom 406 | . . . 4 ⊢ ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → 𝑒 ∈ 𝑃) |
27 | 26 | adantl 480 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → 𝑒 ∈ 𝑃) |
28 | 5, 27 | opabssxpd 5729 | . 2 ⊢ (𝑉 ∈ 𝑊 → {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ⊆ (𝑊 × 𝑃)) |
29 | 1, 28 | eqsstrid 4030 | 1 ⊢ (𝑉 ∈ 𝑊 → 𝐺 ⊆ (𝑊 × 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∃wrex 3067 ⊆ wss 3949 𝒫 cpw 4606 {copab 5214 × cxp 5680 ‘cfv 6553 Vtxcvtx 28829 Edgcedg 28880 UPGraphcupgr 28913 USPGraphcuspgr 28981 Pairscspr 46846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-2o 8494 df-oadd 8497 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-dju 9932 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-n0 12511 df-xnn0 12583 df-z 12597 df-uz 12861 df-fz 13525 df-hash 14330 df-edg 28881 df-upgr 28915 df-uspgr 28983 df-spr 46847 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |