Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volmea Structured version   Visualization version   GIF version

Theorem volmea 45864
Description: The Lebesgue measure on the Reals is actually a measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
volmea (𝜑 → vol ∈ Meas)

Proof of Theorem volmea
Dummy variables 𝑒 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmvolsal 45736 . . 3 dom vol ∈ SAlg
21a1i 11 . 2 (𝜑 → dom vol ∈ SAlg)
3 volf 25476 . . 3 vol:dom vol⟶(0[,]+∞)
43a1i 11 . 2 (𝜑 → vol:dom vol⟶(0[,]+∞))
5 vol0 45349 . . 3 (vol‘∅) = 0
65a1i 11 . 2 (𝜑 → (vol‘∅) = 0)
7 simp1 1133 . . 3 ((𝜑𝑒:ℕ⟶dom vol ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝜑)
8 simp2 1134 . . 3 ((𝜑𝑒:ℕ⟶dom vol ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝑒:ℕ⟶dom vol)
9 fveq2 6900 . . . . . 6 (𝑚 = 𝑛 → (𝑒𝑚) = (𝑒𝑛))
109cbvdisjv 5126 . . . . 5 (Disj 𝑚 ∈ ℕ (𝑒𝑚) ↔ Disj 𝑛 ∈ ℕ (𝑒𝑛))
1110biimpri 227 . . . 4 (Disj 𝑛 ∈ ℕ (𝑒𝑛) → Disj 𝑚 ∈ ℕ (𝑒𝑚))
12113ad2ant3 1132 . . 3 ((𝜑𝑒:ℕ⟶dom vol ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → Disj 𝑚 ∈ ℕ (𝑒𝑚))
13 simp2 1134 . . . 4 ((𝜑𝑒:ℕ⟶dom vol ∧ Disj 𝑚 ∈ ℕ (𝑒𝑚)) → 𝑒:ℕ⟶dom vol)
1410biimpi 215 . . . . 5 (Disj 𝑚 ∈ ℕ (𝑒𝑚) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
15143ad2ant3 1132 . . . 4 ((𝜑𝑒:ℕ⟶dom vol ∧ Disj 𝑚 ∈ ℕ (𝑒𝑚)) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
1613, 15voliunsge0 45863 . . 3 ((𝜑𝑒:ℕ⟶dom vol ∧ Disj 𝑚 ∈ ℕ (𝑒𝑚)) → (vol‘ 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝑒𝑛)))))
177, 8, 12, 16syl3anc 1368 . 2 ((𝜑𝑒:ℕ⟶dom vol ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝑒𝑛)))))
182, 4, 6, 17ismeannd 45857 1 (𝜑 → vol ∈ Meas)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  c0 4324   ciun 4998  Disj wdisj 5115  cmpt 5233  dom cdm 5680  wf 6547  cfv 6551  (class class class)co 7424  0cc0 11144  +∞cpnf 11281  cn 12248  [,]cicc 13365  volcvol 25410  SAlgcsalg 45698  Σ^csumge0 45752  Meascmea 45839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-inf2 9670  ax-cc 10464  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-disj 5116  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-se 5636  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-isom 6560  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7689  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-2o 8492  df-er 8729  df-map 8851  df-pm 8852  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9471  df-inf 9472  df-oi 9539  df-dju 9930  df-card 9968  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-3 12312  df-n0 12509  df-z 12595  df-uz 12859  df-q 12969  df-rp 13013  df-xadd 13131  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13523  df-fzo 13666  df-fl 13795  df-seq 14005  df-exp 14065  df-hash 14328  df-cj 15084  df-re 15085  df-im 15086  df-sqrt 15220  df-abs 15221  df-clim 15470  df-rlim 15471  df-sum 15671  df-xmet 21277  df-met 21278  df-ovol 25411  df-vol 25412  df-salg 45699  df-sumge0 45753  df-mea 45840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »