![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlknwwlksnen | Structured version Visualization version GIF version |
Description: In a simple pseudograph, the set of walks of a fixed length and the set of walks represented by words are equinumerous. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 5-Aug-2022.) |
Ref | Expression |
---|---|
wlknwwlksnen | ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} ≈ (𝑁 WWalksN 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . 3 ⊢ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} = {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} | |
2 | eqid 2725 | . . 3 ⊢ (𝑁 WWalksN 𝐺) = (𝑁 WWalksN 𝐺) | |
3 | eqid 2725 | . . 3 ⊢ (𝑤 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} ↦ (2nd ‘𝑤)) = (𝑤 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} ↦ (2nd ‘𝑤)) | |
4 | 1, 2, 3 | wlknwwlksnbij 29771 | . 2 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} ↦ (2nd ‘𝑤)):{𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁}–1-1-onto→(𝑁 WWalksN 𝐺)) |
5 | fvex 6909 | . . . 4 ⊢ (Walks‘𝐺) ∈ V | |
6 | 5 | rabex 5335 | . . 3 ⊢ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} ∈ V |
7 | 6 | f1oen 8994 | . 2 ⊢ ((𝑤 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} ↦ (2nd ‘𝑤)):{𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁}–1-1-onto→(𝑁 WWalksN 𝐺) → {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} ≈ (𝑁 WWalksN 𝐺)) |
8 | 4, 7 | syl 17 | 1 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} ≈ (𝑁 WWalksN 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3418 class class class wbr 5149 ↦ cmpt 5232 –1-1-onto→wf1o 6548 ‘cfv 6549 (class class class)co 7419 1st c1st 7992 2nd c2nd 7993 ≈ cen 8961 ℕ0cn0 12505 ♯chash 14325 USPGraphcuspgr 29033 Walkscwlks 29482 WWalksN cwwlksn 29709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9926 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-n0 12506 df-xnn0 12578 df-z 12592 df-uz 12856 df-fz 13520 df-fzo 13663 df-hash 14326 df-word 14501 df-edg 28933 df-uhgr 28943 df-upgr 28967 df-uspgr 29035 df-wlks 29485 df-wwlks 29713 df-wwlksn 29714 |
This theorem is referenced by: wlknwwlksneqs 29773 wlksnfi 29790 |
Copyright terms: Public domain | W3C validator |