![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkp1lem7 | Structured version Visualization version GIF version |
Description: Lemma for wlkp1 29508. (Contributed by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
wlkp1.n | ⊢ 𝑁 = (♯‘𝐹) |
wlkp1.e | ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
wlkp1.x | ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
wlkp1.u | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
wlkp1.h | ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
wlkp1.q | ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) |
wlkp1.s | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
Ref | Expression |
---|---|
wlkp1lem7 | ⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp1.x | . . 3 ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) | |
2 | fveq2 6897 | . . . . . 6 ⊢ (𝑘 = 𝑁 → (𝑄‘𝑘) = (𝑄‘𝑁)) | |
3 | fveq2 6897 | . . . . . 6 ⊢ (𝑘 = 𝑁 → (𝑃‘𝑘) = (𝑃‘𝑁)) | |
4 | 2, 3 | eqeq12d 2744 | . . . . 5 ⊢ (𝑘 = 𝑁 → ((𝑄‘𝑘) = (𝑃‘𝑘) ↔ (𝑄‘𝑁) = (𝑃‘𝑁))) |
5 | wlkp1.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | wlkp1.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
7 | wlkp1.f | . . . . . 6 ⊢ (𝜑 → Fun 𝐼) | |
8 | wlkp1.a | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
9 | wlkp1.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
10 | wlkp1.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
11 | wlkp1.d | . . . . . 6 ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) | |
12 | wlkp1.w | . . . . . 6 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
13 | wlkp1.n | . . . . . 6 ⊢ 𝑁 = (♯‘𝐹) | |
14 | wlkp1.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) | |
15 | wlkp1.u | . . . . . 6 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) | |
16 | wlkp1.h | . . . . . 6 ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) | |
17 | wlkp1.q | . . . . . 6 ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) | |
18 | wlkp1.s | . . . . . 6 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
19 | 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15, 16, 17, 18 | wlkp1lem5 29504 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄‘𝑘) = (𝑃‘𝑘)) |
20 | wlkcl 29442 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
21 | 13 | eqcomi 2737 | . . . . . . . 8 ⊢ (♯‘𝐹) = 𝑁 |
22 | 21 | eleq1i 2820 | . . . . . . 7 ⊢ ((♯‘𝐹) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0) |
23 | nn0fz0 13632 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (0...𝑁)) | |
24 | 22, 23 | sylbb 218 | . . . . . 6 ⊢ ((♯‘𝐹) ∈ ℕ0 → 𝑁 ∈ (0...𝑁)) |
25 | 12, 20, 24 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (0...𝑁)) |
26 | 4, 19, 25 | rspcdva 3610 | . . . 4 ⊢ (𝜑 → (𝑄‘𝑁) = (𝑃‘𝑁)) |
27 | 17 | fveq1i 6898 | . . . . 5 ⊢ (𝑄‘(𝑁 + 1)) = ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘(𝑁 + 1)) |
28 | ovex 7453 | . . . . . 6 ⊢ (𝑁 + 1) ∈ V | |
29 | 5, 6, 7, 8, 9, 10, 11, 12, 13 | wlkp1lem1 29500 | . . . . . 6 ⊢ (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃) |
30 | fsnunfv 7196 | . . . . . 6 ⊢ (((𝑁 + 1) ∈ V ∧ 𝐶 ∈ 𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃) → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘(𝑁 + 1)) = 𝐶) | |
31 | 28, 10, 29, 30 | mp3an2i 1463 | . . . . 5 ⊢ (𝜑 → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘(𝑁 + 1)) = 𝐶) |
32 | 27, 31 | eqtrid 2780 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑁 + 1)) = 𝐶) |
33 | 26, 32 | preq12d 4746 | . . 3 ⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} = {(𝑃‘𝑁), 𝐶}) |
34 | fsnunfv 7196 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐸 ∈ (Edg‘𝐺) ∧ ¬ 𝐵 ∈ dom 𝐼) → ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵) = 𝐸) | |
35 | 9, 14, 11, 34 | syl3anc 1369 | . . 3 ⊢ (𝜑 → ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵) = 𝐸) |
36 | 1, 33, 35 | 3sstr4d 4027 | . 2 ⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵)) |
37 | 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15, 16 | wlkp1lem3 29502 | . 2 ⊢ (𝜑 → ((iEdg‘𝑆)‘(𝐻‘𝑁)) = ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵)) |
38 | 36, 37 | sseqtrrd 4021 | 1 ⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ∪ cun 3945 ⊆ wss 3947 {csn 4629 {cpr 4631 〈cop 4635 class class class wbr 5148 dom cdm 5678 Fun wfun 6542 ‘cfv 6548 (class class class)co 7420 Fincfn 8964 0cc0 11139 1c1 11140 + caddc 11142 ℕ0cn0 12503 ...cfz 13517 ♯chash 14322 Vtxcvtx 28822 iEdgciedg 28823 Edgcedg 28873 Walkscwlks 29423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-ifp 1062 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-n0 12504 df-z 12590 df-uz 12854 df-fz 13518 df-fzo 13661 df-hash 14323 df-word 14498 df-wlks 29426 |
This theorem is referenced by: wlkp1lem8 29507 |
Copyright terms: Public domain | W3C validator |