![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xadd0ge2 | Structured version Visualization version GIF version |
Description: A number is less than or equal to itself plus a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
xadd0ge2.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xadd0ge2.b | ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
xadd0ge2 | ⊢ (𝜑 → 𝐴 ≤ (𝐵 +𝑒 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xadd0ge2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xadd0ge2.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) | |
3 | 1, 2 | xadd0ge 44840 | . 2 ⊢ (𝜑 → 𝐴 ≤ (𝐴 +𝑒 𝐵)) |
4 | iccssxr 13442 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
5 | 4, 2 | sselid 3974 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
6 | 1, 5 | xaddcomd 44844 | . 2 ⊢ (𝜑 → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴)) |
7 | 3, 6 | breqtrd 5175 | 1 ⊢ (𝜑 → 𝐴 ≤ (𝐵 +𝑒 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 class class class wbr 5149 (class class class)co 7419 0cc0 11140 +∞cpnf 11277 ℝ*cxr 11279 ≤ cle 11281 +𝑒 cxad 13125 [,]cicc 13362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-1st 7994 df-2nd 7995 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-xadd 13128 df-icc 13366 |
This theorem is referenced by: sge0xadd 45961 |
Copyright terms: Public domain | W3C validator |