Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimmnfvlem2 Structured version   Visualization version   GIF version

Theorem xlimmnfvlem2 45215
Description: Lemma for xlimmnf 45223: the "if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimmnfvlem2.k 𝑘𝜑
xlimmnfvlem2.j 𝑗𝜑
xlimmnfvlem2.m (𝜑𝑀 ∈ ℤ)
xlimmnfvlem2.z 𝑍 = (ℤ𝑀)
xlimmnfvlem2.f (𝜑𝐹:𝑍⟶ℝ*)
xlimmnfvlem2.g (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
Assertion
Ref Expression
xlimmnfvlem2 (𝜑𝐹~~>*-∞)
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝑀(𝑥,𝑘)   𝑍(𝑥)

Proof of Theorem xlimmnfvlem2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 letopon 23102 . . . . . . 7 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
21a1i 11 . . . . . 6 (𝜑 → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
32elfvexd 6930 . . . . 5 (𝜑 → ℝ* ∈ V)
4 cnex 11213 . . . . . 6 ℂ ∈ V
54a1i 11 . . . . 5 (𝜑 → ℂ ∈ V)
6 xlimmnfvlem2.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
7 xlimmnfvlem2.z . . . . . . 7 𝑍 = (ℤ𝑀)
87uzsscn2 44854 . . . . . 6 𝑍 ⊆ ℂ
98a1i 11 . . . . 5 (𝜑𝑍 ⊆ ℂ)
10 elpm2r 8857 . . . . 5 (((ℝ* ∈ V ∧ ℂ ∈ V) ∧ (𝐹:𝑍⟶ℝ*𝑍 ⊆ ℂ)) → 𝐹 ∈ (ℝ*pm ℂ))
113, 5, 6, 9, 10syl22anc 838 . . . 4 (𝜑𝐹 ∈ (ℝ*pm ℂ))
12 mnfxr 11295 . . . . 5 -∞ ∈ ℝ*
1312a1i 11 . . . 4 (𝜑 → -∞ ∈ ℝ*)
14 mnfnei 23118 . . . . . . . 8 ((𝑢 ∈ (ordTop‘ ≤ ) ∧ -∞ ∈ 𝑢) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝑢)
1514adantll 713 . . . . . . 7 (((𝜑𝑢 ∈ (ordTop‘ ≤ )) ∧ -∞ ∈ 𝑢) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝑢)
16 xlimmnfvlem2.j . . . . . . . . . . . . 13 𝑗𝜑
17 nfv 1910 . . . . . . . . . . . . 13 𝑗 𝑥 ∈ ℝ
1816, 17nfan 1895 . . . . . . . . . . . 12 𝑗(𝜑𝑥 ∈ ℝ)
19 nfv 1910 . . . . . . . . . . . 12 𝑗(-∞[,)𝑥) ⊆ 𝑢
2018, 19nfan 1895 . . . . . . . . . . 11 𝑗((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢)
21 simprr 772 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
22 xlimmnfvlem2.k . . . . . . . . . . . . . . . . . 18 𝑘𝜑
23 nfv 1910 . . . . . . . . . . . . . . . . . 18 𝑘 𝑥 ∈ ℝ
2422, 23nfan 1895 . . . . . . . . . . . . . . . . 17 𝑘(𝜑𝑥 ∈ ℝ)
25 nfv 1910 . . . . . . . . . . . . . . . . 17 𝑘(-∞[,)𝑥) ⊆ 𝑢
2624, 25nfan 1895 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢)
27 nfv 1910 . . . . . . . . . . . . . . . 16 𝑘 𝑗𝑍
2826, 27nfan 1895 . . . . . . . . . . . . . . 15 𝑘(((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍)
297uztrn2 12865 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
30293adant1 1128 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
316fdmd 6727 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom 𝐹 = 𝑍)
32313ad2ant1 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → dom 𝐹 = 𝑍)
3330, 32eleqtrrd 2832 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
3433ad5ant134 1365 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑘 ∈ dom 𝐹)
3534adantl4r 754 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑘 ∈ dom 𝐹)
36 simp-4r 783 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (-∞[,)𝑥) ⊆ 𝑢)
3736adantl4r 754 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (-∞[,)𝑥) ⊆ 𝑢)
3812a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → -∞ ∈ ℝ*)
39 simp-4r 783 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑥 ∈ ℝ)
40 rexr 11284 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
4139, 40syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑥 ∈ ℝ*)
42 simp-4l 782 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝜑)
4329ad4ant23 752 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑘𝑍)
446ffvelcdmda 7088 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
4542, 43, 44syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) ∈ ℝ*)
4645mnfled 13141 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → -∞ ≤ (𝐹𝑘))
47 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) < 𝑥)
4838, 41, 45, 46, 47elicod 13400 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) ∈ (-∞[,)𝑥))
4948adantl3r 749 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) ∈ (-∞[,)𝑥))
5037, 49sseldd 3979 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) ∈ 𝑢)
5135, 50jca 511 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
5251ex 412 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) < 𝑥 → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
5328, 52ralimdaa 3253 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
5453adantrr 716 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
5521, 54mpd 15 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
56553impb 1113 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
57 xlimmnfvlem2.g . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
5857r19.21bi 3244 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
5958adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
6020, 56, 59reximdd 44512 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
61 xlimmnfvlem2.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
627rexuz3 15321 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6361, 62syl 17 . . . . . . . . . . 11 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6463ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6560, 64mpbid 231 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
6665rexlimdva2 3153 . . . . . . . 8 (𝜑 → (∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6766ad2antrr 725 . . . . . . 7 (((𝜑𝑢 ∈ (ordTop‘ ≤ )) ∧ -∞ ∈ 𝑢) → (∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6815, 67mpd 15 . . . . . 6 (((𝜑𝑢 ∈ (ordTop‘ ≤ )) ∧ -∞ ∈ 𝑢) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
6968ex 412 . . . . 5 ((𝜑𝑢 ∈ (ordTop‘ ≤ )) → (-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
7069ralrimiva 3142 . . . 4 (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
7111, 13, 703jca 1126 . . 3 (𝜑 → (𝐹 ∈ (ℝ*pm ℂ) ∧ -∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
72 nfcv 2899 . . . 4 𝑘𝐹
7372, 2lmbr3 45129 . . 3 (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞ ↔ (𝐹 ∈ (ℝ*pm ℂ) ∧ -∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
7471, 73mpbird 257 . 2 (𝜑𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞)
75 df-xlim 45201 . . . 4 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
7675breqi 5148 . . 3 (𝐹~~>*-∞ ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞)
7776a1i 11 . 2 (𝜑 → (𝐹~~>*-∞ ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞))
7874, 77mpbird 257 1 (𝜑𝐹~~>*-∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wnf 1778  wcel 2099  wral 3057  wrex 3066  Vcvv 3470  wss 3945   class class class wbr 5142  dom cdm 5672  wf 6538  cfv 6542  (class class class)co 7414  pm cpm 8839  cc 11130  cr 11131  -∞cmnf 11270  *cxr 11271   < clt 11272  cle 11273  cz 12582  cuz 12846  [,)cico 13352  ordTopcordt 17474  TopOnctopon 22805  𝑡clm 23123  ~~>*clsxlim 45200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-1o 8480  df-er 8718  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fi 9428  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-z 12583  df-uz 12847  df-ioo 13354  df-ioc 13355  df-ico 13356  df-icc 13357  df-topgen 17418  df-ordt 17476  df-ps 18551  df-tsr 18552  df-top 22789  df-topon 22806  df-bases 22842  df-lm 23126  df-xlim 45201
This theorem is referenced by:  xlimmnfv  45216
  Copyright terms: Public domain W3C validator
OSZAR »