MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulgt0 Structured version   Visualization version   GIF version

Theorem xmulgt0 13289
Description: Extended real version of mulgt0 11316. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulgt0 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 0 < (𝐴 ·e 𝐵))

Proof of Theorem xmulgt0
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 0 < 𝐴)
2 simpr 484 . . . . . 6 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → 0 < 𝐵)
31, 2anim12i 612 . . . . 5 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → (0 < 𝐴 ∧ 0 < 𝐵))
4 mulgt0 11316 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵))
54an4s 659 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵))
65ancoms 458 . . . . . 6 (((0 < 𝐴 ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 0 < (𝐴 · 𝐵))
7 rexmul 13277 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
87adantl 481 . . . . . 6 (((0 < 𝐴 ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
96, 8breqtrrd 5171 . . . . 5 (((0 < 𝐴 ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 0 < (𝐴 ·e 𝐵))
103, 9sylan 579 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 0 < (𝐴 ·e 𝐵))
1110anassrs 467 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → 0 < (𝐴 ·e 𝐵))
12 0ltpnf 13129 . . . . 5 0 < +∞
13 oveq2 7423 . . . . . 6 (𝐵 = +∞ → (𝐴 ·e 𝐵) = (𝐴 ·e +∞))
14 xmulpnf1 13280 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
1514adantr 480 . . . . . 6 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → (𝐴 ·e +∞) = +∞)
1613, 15sylan9eqr 2790 . . . . 5 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐵 = +∞) → (𝐴 ·e 𝐵) = +∞)
1712, 16breqtrrid 5181 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐵 = +∞) → 0 < (𝐴 ·e 𝐵))
1817adantlr 714 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → 0 < (𝐴 ·e 𝐵))
19 simplrr 777 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) → 0 < 𝐵)
20 xmulasslem2 13288 . . . 4 ((0 < 𝐵𝐵 = -∞) → 0 < (𝐴 ·e 𝐵))
2119, 20sylan 579 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → 0 < (𝐴 ·e 𝐵))
22 simprl 770 . . . . 5 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ*)
23 elxr 13123 . . . . 5 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
2422, 23sylib 217 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
2524adantr 480 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
2611, 18, 21, 25mpjao3dan 1429 . 2 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) → 0 < (𝐴 ·e 𝐵))
27 oveq1 7422 . . . 4 (𝐴 = +∞ → (𝐴 ·e 𝐵) = (+∞ ·e 𝐵))
28 xmulpnf2 13281 . . . . 5 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (+∞ ·e 𝐵) = +∞)
2928adantl 481 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → (+∞ ·e 𝐵) = +∞)
3027, 29sylan9eqr 2790 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 = +∞) → (𝐴 ·e 𝐵) = +∞)
3112, 30breqtrrid 5181 . 2 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 = +∞) → 0 < (𝐴 ·e 𝐵))
32 xmulasslem2 13288 . . 3 ((0 < 𝐴𝐴 = -∞) → 0 < (𝐴 ·e 𝐵))
3332ad4ant24 753 . 2 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 = -∞) → 0 < (𝐴 ·e 𝐵))
34 simpll 766 . . 3 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 𝐴 ∈ ℝ*)
35 elxr 13123 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
3634, 35sylib 217 . 2 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
3726, 31, 33, 36mpjao3dan 1429 1 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 0 < (𝐴 ·e 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1084   = wceq 1534  wcel 2099   class class class wbr 5143  (class class class)co 7415  cr 11132  0cc0 11133   · cmul 11138  +∞cpnf 11270  -∞cmnf 11271  *cxr 11272   < clt 11273   ·e cxmu 13118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-po 5585  df-so 5586  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7418  df-oprab 7419  df-mpo 7420  df-er 8719  df-en 8959  df-dom 8960  df-sdom 8961  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-xmul 13121
This theorem is referenced by:  xmulge0  13290  xmulasslem3  13292
  Copyright terms: Public domain W3C validator
OSZAR »