![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zltlesub | Structured version Visualization version GIF version |
Description: If an integer 𝑁 is less than or equal to a real, and we subtract a quantity less than 1, then 𝑁 is less than or equal to the result. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
zltlesub.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
zltlesub.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
zltlesub.nlea | ⊢ (𝜑 → 𝑁 ≤ 𝐴) |
zltlesub.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
zltlesub.blt1 | ⊢ (𝜑 → 𝐵 < 1) |
zltlesub.asb | ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) |
Ref | Expression |
---|---|
zltlesub | ⊢ (𝜑 → 𝑁 ≤ (𝐴 − 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zltlesub.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
2 | 1 | zred 12699 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
3 | zltlesub.asb | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) | |
4 | 3 | zred 12699 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℝ) |
5 | zltlesub.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
6 | 4, 5 | readdcld 11275 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) + 𝐵) ∈ ℝ) |
7 | peano2re 11419 | . . . 4 ⊢ ((𝐴 − 𝐵) ∈ ℝ → ((𝐴 − 𝐵) + 1) ∈ ℝ) | |
8 | 4, 7 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) + 1) ∈ ℝ) |
9 | zltlesub.nlea | . . . 4 ⊢ (𝜑 → 𝑁 ≤ 𝐴) | |
10 | zltlesub.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
11 | 10 | recnd 11274 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
12 | 5 | recnd 11274 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
13 | 11, 12 | npcand 11607 | . . . 4 ⊢ (𝜑 → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
14 | 9, 13 | breqtrrd 5177 | . . 3 ⊢ (𝜑 → 𝑁 ≤ ((𝐴 − 𝐵) + 𝐵)) |
15 | 1red 11247 | . . . 4 ⊢ (𝜑 → 1 ∈ ℝ) | |
16 | zltlesub.blt1 | . . . 4 ⊢ (𝜑 → 𝐵 < 1) | |
17 | 5, 15, 4, 16 | ltadd2dd 11405 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) + 𝐵) < ((𝐴 − 𝐵) + 1)) |
18 | 2, 6, 8, 14, 17 | lelttrd 11404 | . 2 ⊢ (𝜑 → 𝑁 < ((𝐴 − 𝐵) + 1)) |
19 | zleltp1 12646 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ) → (𝑁 ≤ (𝐴 − 𝐵) ↔ 𝑁 < ((𝐴 − 𝐵) + 1))) | |
20 | 1, 3, 19 | syl2anc 582 | . 2 ⊢ (𝜑 → (𝑁 ≤ (𝐴 − 𝐵) ↔ 𝑁 < ((𝐴 − 𝐵) + 1))) |
21 | 18, 20 | mpbird 256 | 1 ⊢ (𝜑 → 𝑁 ≤ (𝐴 − 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2098 class class class wbr 5149 (class class class)co 7419 ℝcr 11139 1c1 11141 + caddc 11143 < clt 11280 ≤ cle 11281 − cmin 11476 ℤcz 12591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-n0 12506 df-z 12592 |
This theorem is referenced by: fourierdlem65 45694 |
Copyright terms: Public domain | W3C validator |