Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1fzopredsuc Structured version   Visualization version   GIF version

Theorem 1fzopredsuc 46842
Description: Join 0 and a successor to the beginning and the end of an open integer interval starting at 1. (Contributed by AV, 14-Jul-2020.)
Assertion
Ref Expression
1fzopredsuc (𝑁 ∈ ℕ0 → (0...𝑁) = (({0} ∪ (1..^𝑁)) ∪ {𝑁}))

Proof of Theorem 1fzopredsuc
StepHypRef Expression
1 elnn0uz 12900 . 2 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
2 fzopredsuc 46841 . . 3 (𝑁 ∈ (ℤ‘0) → (0...𝑁) = (({0} ∪ ((0 + 1)..^𝑁)) ∪ {𝑁}))
3 0p1e1 12367 . . . . . 6 (0 + 1) = 1
43oveq1i 7429 . . . . 5 ((0 + 1)..^𝑁) = (1..^𝑁)
54uneq2i 4157 . . . 4 ({0} ∪ ((0 + 1)..^𝑁)) = ({0} ∪ (1..^𝑁))
65uneq1i 4156 . . 3 (({0} ∪ ((0 + 1)..^𝑁)) ∪ {𝑁}) = (({0} ∪ (1..^𝑁)) ∪ {𝑁})
72, 6eqtrdi 2781 . 2 (𝑁 ∈ (ℤ‘0) → (0...𝑁) = (({0} ∪ (1..^𝑁)) ∪ {𝑁}))
81, 7sylbi 216 1 (𝑁 ∈ ℕ0 → (0...𝑁) = (({0} ∪ (1..^𝑁)) ∪ {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cun 3942  {csn 4630  cfv 6549  (class class class)co 7419  0cc0 11140  1c1 11141   + caddc 11143  0cn0 12505  cuz 12855  ...cfz 13519  ..^cfzo 13662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-fzo 13663
This theorem is referenced by:  el1fzopredsuc  46843
  Copyright terms: Public domain W3C validator
OSZAR »