![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2exp5 | Structured version Visualization version GIF version |
Description: Two to the fifth power is 32. (Contributed by AV, 16-Aug-2021.) |
Ref | Expression |
---|---|
2exp5 | ⊢ (2↑5) = ;32 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3p2e5 12393 | . . . . 5 ⊢ (3 + 2) = 5 | |
2 | 1 | eqcomi 2734 | . . . 4 ⊢ 5 = (3 + 2) |
3 | 2 | oveq2i 7428 | . . 3 ⊢ (2↑5) = (2↑(3 + 2)) |
4 | 2cn 12317 | . . . . 5 ⊢ 2 ∈ ℂ | |
5 | 3nn0 12520 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
6 | 2nn0 12519 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
7 | expadd 14102 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 2 ∈ ℕ0) → (2↑(3 + 2)) = ((2↑3) · (2↑2))) | |
8 | 4, 5, 6, 7 | mp3an 1457 | . . . 4 ⊢ (2↑(3 + 2)) = ((2↑3) · (2↑2)) |
9 | cu2 14196 | . . . . 5 ⊢ (2↑3) = 8 | |
10 | sq2 14193 | . . . . 5 ⊢ (2↑2) = 4 | |
11 | 9, 10 | oveq12i 7429 | . . . 4 ⊢ ((2↑3) · (2↑2)) = (8 · 4) |
12 | 8, 11 | eqtri 2753 | . . 3 ⊢ (2↑(3 + 2)) = (8 · 4) |
13 | 3, 12 | eqtri 2753 | . 2 ⊢ (2↑5) = (8 · 4) |
14 | 8t4e32 12824 | . 2 ⊢ (8 · 4) = ;32 | |
15 | 13, 14 | eqtri 2753 | 1 ⊢ (2↑5) = ;32 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 (class class class)co 7417 ℂcc 11136 + caddc 11141 · cmul 11143 2c2 12297 3c3 12298 4c4 12299 5c5 12300 8c8 12303 ℕ0cn0 12502 ;cdc 12707 ↑cexp 14059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-seq 14000 df-exp 14060 |
This theorem is referenced by: 3lexlogpow2ineq1 41615 m5prm 47017 2exp340mod341 47152 ackval3012 47893 |
Copyright terms: Public domain | W3C validator |