![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > asclghm | Structured version Visualization version GIF version |
Description: The algebra scalars function is a group homomorphism. (Contributed by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
asclf.a | ⊢ 𝐴 = (algSc‘𝑊) |
asclf.f | ⊢ 𝐹 = (Scalar‘𝑊) |
asclf.r | ⊢ (𝜑 → 𝑊 ∈ Ring) |
asclf.l | ⊢ (𝜑 → 𝑊 ∈ LMod) |
Ref | Expression |
---|---|
asclghm | ⊢ (𝜑 → 𝐴 ∈ (𝐹 GrpHom 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . 2 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
2 | eqid 2725 | . 2 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | eqid 2725 | . 2 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
4 | eqid 2725 | . 2 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
5 | asclf.l | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
6 | asclf.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
7 | 6 | lmodring 20759 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹 ∈ Ring) |
9 | ringgrp 20186 | . . 3 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 ∈ Grp) |
11 | asclf.r | . . 3 ⊢ (𝜑 → 𝑊 ∈ Ring) | |
12 | ringgrp 20186 | . . 3 ⊢ (𝑊 ∈ Ring → 𝑊 ∈ Grp) | |
13 | 11, 12 | syl 17 | . 2 ⊢ (𝜑 → 𝑊 ∈ Grp) |
14 | asclf.a | . . 3 ⊢ 𝐴 = (algSc‘𝑊) | |
15 | 14, 6, 11, 5, 1, 2 | asclf 21826 | . 2 ⊢ (𝜑 → 𝐴:(Base‘𝐹)⟶(Base‘𝑊)) |
16 | 5 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑊 ∈ LMod) |
17 | simprl 769 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑥 ∈ (Base‘𝐹)) | |
18 | simprr 771 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑦 ∈ (Base‘𝐹)) | |
19 | eqid 2725 | . . . . . . 7 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
20 | 2, 19 | ringidcl 20210 | . . . . . 6 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ (Base‘𝑊)) |
21 | 11, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → (1r‘𝑊) ∈ (Base‘𝑊)) |
22 | 21 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (1r‘𝑊) ∈ (Base‘𝑊)) |
23 | eqid 2725 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
24 | 2, 4, 6, 23, 1, 3 | lmodvsdir 20777 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹) ∧ (1r‘𝑊) ∈ (Base‘𝑊))) → ((𝑥(+g‘𝐹)𝑦)( ·𝑠 ‘𝑊)(1r‘𝑊)) = ((𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))(+g‘𝑊)(𝑦( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
25 | 16, 17, 18, 22, 24 | syl13anc 1369 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝑥(+g‘𝐹)𝑦)( ·𝑠 ‘𝑊)(1r‘𝑊)) = ((𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))(+g‘𝑊)(𝑦( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
26 | 1, 3 | grpcl 18903 | . . . . . 6 ⊢ ((𝐹 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹)) → (𝑥(+g‘𝐹)𝑦) ∈ (Base‘𝐹)) |
27 | 26 | 3expb 1117 | . . . . 5 ⊢ ((𝐹 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(+g‘𝐹)𝑦) ∈ (Base‘𝐹)) |
28 | 10, 27 | sylan 578 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(+g‘𝐹)𝑦) ∈ (Base‘𝐹)) |
29 | 14, 6, 1, 23, 19 | asclval 21824 | . . . 4 ⊢ ((𝑥(+g‘𝐹)𝑦) ∈ (Base‘𝐹) → (𝐴‘(𝑥(+g‘𝐹)𝑦)) = ((𝑥(+g‘𝐹)𝑦)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
30 | 28, 29 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(+g‘𝐹)𝑦)) = ((𝑥(+g‘𝐹)𝑦)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
31 | 14, 6, 1, 23, 19 | asclval 21824 | . . . . 5 ⊢ (𝑥 ∈ (Base‘𝐹) → (𝐴‘𝑥) = (𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))) |
32 | 14, 6, 1, 23, 19 | asclval 21824 | . . . . 5 ⊢ (𝑦 ∈ (Base‘𝐹) → (𝐴‘𝑦) = (𝑦( ·𝑠 ‘𝑊)(1r‘𝑊))) |
33 | 31, 32 | oveqan12d 7436 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹)) → ((𝐴‘𝑥)(+g‘𝑊)(𝐴‘𝑦)) = ((𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))(+g‘𝑊)(𝑦( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
34 | 33 | adantl 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝐴‘𝑥)(+g‘𝑊)(𝐴‘𝑦)) = ((𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))(+g‘𝑊)(𝑦( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
35 | 25, 30, 34 | 3eqtr4d 2775 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(+g‘𝐹)𝑦)) = ((𝐴‘𝑥)(+g‘𝑊)(𝐴‘𝑦))) |
36 | 1, 2, 3, 4, 10, 13, 15, 35 | isghmd 19184 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐹 GrpHom 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ‘cfv 6547 (class class class)co 7417 Basecbs 17180 +gcplusg 17233 Scalarcsca 17236 ·𝑠 cvsca 17237 Grpcgrp 18895 GrpHom cghm 19172 1rcur 20129 Ringcrg 20181 LModclmod 20751 algSccascl 21797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-plusg 17246 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-grp 18898 df-ghm 19173 df-mgp 20083 df-ur 20130 df-ring 20183 df-lmod 20753 df-ascl 21800 |
This theorem is referenced by: asclinvg 21833 asclrhm 21834 cpmatacl 22655 cpmatinvcl 22656 mat2pmatghm 22669 mat2pmatmul 22670 |
Copyright terms: Public domain | W3C validator |