![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ascl0 | Structured version Visualization version GIF version |
Description: The scalar 0 embedded into a left module corresponds to the 0 of the left module if the left module is also a ring. (Contributed by AV, 31-Jul-2019.) |
Ref | Expression |
---|---|
ascl0.a | ⊢ 𝐴 = (algSc‘𝑊) |
ascl0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
ascl0.l | ⊢ (𝜑 → 𝑊 ∈ LMod) |
ascl0.r | ⊢ (𝜑 → 𝑊 ∈ Ring) |
Ref | Expression |
---|---|
ascl0 | ⊢ (𝜑 → (𝐴‘(0g‘𝐹)) = (0g‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ascl0.l | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | ascl0.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | 2 | lmodfgrp 20751 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ Grp) |
5 | eqid 2725 | . . . . 5 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
6 | eqid 2725 | . . . . 5 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
7 | 5, 6 | grpidcl 18921 | . . . 4 ⊢ (𝐹 ∈ Grp → (0g‘𝐹) ∈ (Base‘𝐹)) |
8 | 4, 7 | syl 17 | . . 3 ⊢ (𝜑 → (0g‘𝐹) ∈ (Base‘𝐹)) |
9 | ascl0.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑊) | |
10 | eqid 2725 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
11 | eqid 2725 | . . . 4 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
12 | 9, 2, 5, 10, 11 | asclval 21812 | . . 3 ⊢ ((0g‘𝐹) ∈ (Base‘𝐹) → (𝐴‘(0g‘𝐹)) = ((0g‘𝐹)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
13 | 8, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝐴‘(0g‘𝐹)) = ((0g‘𝐹)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
14 | ascl0.r | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Ring) | |
15 | eqid 2725 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
16 | 15, 11 | ringidcl 20201 | . . . 4 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ (Base‘𝑊)) |
17 | 14, 16 | syl 17 | . . 3 ⊢ (𝜑 → (1r‘𝑊) ∈ (Base‘𝑊)) |
18 | eqid 2725 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
19 | 15, 2, 10, 6, 18 | lmod0vs 20777 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (1r‘𝑊) ∈ (Base‘𝑊)) → ((0g‘𝐹)( ·𝑠 ‘𝑊)(1r‘𝑊)) = (0g‘𝑊)) |
20 | 1, 17, 19 | syl2anc 582 | . 2 ⊢ (𝜑 → ((0g‘𝐹)( ·𝑠 ‘𝑊)(1r‘𝑊)) = (0g‘𝑊)) |
21 | 13, 20 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝐴‘(0g‘𝐹)) = (0g‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ‘cfv 6543 (class class class)co 7413 Basecbs 17174 Scalarcsca 17230 ·𝑠 cvsca 17231 0gc0g 17415 Grpcgrp 18889 1rcur 20120 Ringcrg 20172 LModclmod 20742 algSccascl 21785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-plusg 17240 df-0g 17417 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-grp 18892 df-mgp 20074 df-ur 20121 df-ring 20174 df-lmod 20744 df-ascl 21788 |
This theorem is referenced by: ply1ascl0 22177 ply1scl0 22213 mplascl0 41848 assaascl0 47556 |
Copyright terms: Public domain | W3C validator |