![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bcneg1 | Structured version Visualization version GIF version |
Description: The binomial coefficent over negative one is zero. (Contributed by Scott Fenton, 29-May-2020.) |
Ref | Expression |
---|---|
bcneg1 | ⊢ (𝑁 ∈ ℕ0 → (𝑁C-1) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1z 12622 | . . 3 ⊢ -1 ∈ ℤ | |
2 | bcval 14289 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ -1 ∈ ℤ) → (𝑁C-1) = if(-1 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − -1)) · (!‘-1))), 0)) | |
3 | 1, 2 | mpan2 690 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁C-1) = if(-1 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − -1)) · (!‘-1))), 0)) |
4 | neg1lt0 12353 | . . . . . 6 ⊢ -1 < 0 | |
5 | neg1rr 12351 | . . . . . . 7 ⊢ -1 ∈ ℝ | |
6 | 0re 11240 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
7 | 5, 6 | ltnlei 11359 | . . . . . 6 ⊢ (-1 < 0 ↔ ¬ 0 ≤ -1) |
8 | 4, 7 | mpbi 229 | . . . . 5 ⊢ ¬ 0 ≤ -1 |
9 | 8 | intnanr 487 | . . . 4 ⊢ ¬ (0 ≤ -1 ∧ -1 ≤ 𝑁) |
10 | nn0z 12607 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
11 | 0z 12593 | . . . . . 6 ⊢ 0 ∈ ℤ | |
12 | elfz 13516 | . . . . . 6 ⊢ ((-1 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-1 ∈ (0...𝑁) ↔ (0 ≤ -1 ∧ -1 ≤ 𝑁))) | |
13 | 1, 11, 12 | mp3an12 1448 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (-1 ∈ (0...𝑁) ↔ (0 ≤ -1 ∧ -1 ≤ 𝑁))) |
14 | 10, 13 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (-1 ∈ (0...𝑁) ↔ (0 ≤ -1 ∧ -1 ≤ 𝑁))) |
15 | 9, 14 | mtbiri 327 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ¬ -1 ∈ (0...𝑁)) |
16 | 15 | iffalsed 4535 | . 2 ⊢ (𝑁 ∈ ℕ0 → if(-1 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − -1)) · (!‘-1))), 0) = 0) |
17 | 3, 16 | eqtrd 2768 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁C-1) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ifcif 4524 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 0cc0 11132 1c1 11133 · cmul 11137 < clt 11272 ≤ cle 11273 − cmin 11468 -cneg 11469 / cdiv 11895 ℕ0cn0 12496 ℤcz 12582 ...cfz 13510 !cfa 14258 Ccbc 14287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-n0 12497 df-z 12583 df-fz 13511 df-bc 14288 |
This theorem is referenced by: fwddifnp1 35755 |
Copyright terms: Public domain | W3C validator |