![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cayleyth | Structured version Visualization version GIF version |
Description: Cayley's Theorem (existence version): every group 𝐺 is isomorphic to a subgroup of the symmetric group on the underlying set of 𝐺. (For any group 𝐺 there exists an isomorphism 𝑓 between 𝐺 and a subgroup ℎ of the symmetric group on the underlying set of 𝐺.) See also Theorem 3.15 in [Rotman] p. 42. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) |
Ref | Expression |
---|---|
cayley.x | ⊢ 𝑋 = (Base‘𝐺) |
cayley.h | ⊢ 𝐻 = (SymGrp‘𝑋) |
Ref | Expression |
---|---|
cayleyth | ⊢ (𝐺 ∈ Grp → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑠))𝑓:𝑋–1-1-onto→𝑠) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cayley.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
2 | cayley.h | . . . 4 ⊢ 𝐻 = (SymGrp‘𝑋) | |
3 | eqid 2728 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | eqid 2728 | . . . 4 ⊢ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) | |
5 | eqid 2728 | . . . 4 ⊢ ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) | |
6 | 1, 2, 3, 4, 5 | cayley 19369 | . . 3 ⊢ (𝐺 ∈ Grp → (ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (SubGrp‘𝐻) ∧ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) ∧ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))):𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) |
7 | 6 | simp1d 1140 | . 2 ⊢ (𝐺 ∈ Grp → ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (SubGrp‘𝐻)) |
8 | 6 | simp2d 1141 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))) |
9 | 6 | simp3d 1142 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))):𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) |
10 | f1oeq1 6827 | . . . 4 ⊢ (𝑓 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ↔ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))):𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) | |
11 | 10 | rspcev 3609 | . . 3 ⊢ (((𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) ∧ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))):𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) → ∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) |
12 | 8, 9, 11 | syl2anc 583 | . 2 ⊢ (𝐺 ∈ Grp → ∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) |
13 | oveq2 7428 | . . . . 5 ⊢ (𝑠 = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (𝐻 ↾s 𝑠) = (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) | |
14 | 13 | oveq2d 7436 | . . . 4 ⊢ (𝑠 = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (𝐺 GrpHom (𝐻 ↾s 𝑠)) = (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))) |
15 | f1oeq3 6829 | . . . 4 ⊢ (𝑠 = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (𝑓:𝑋–1-1-onto→𝑠 ↔ 𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) | |
16 | 14, 15 | rexeqbidv 3340 | . . 3 ⊢ (𝑠 = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑠))𝑓:𝑋–1-1-onto→𝑠 ↔ ∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) |
17 | 16 | rspcev 3609 | . 2 ⊢ ((ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (SubGrp‘𝐻) ∧ ∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑠))𝑓:𝑋–1-1-onto→𝑠) |
18 | 7, 12, 17 | syl2anc 583 | 1 ⊢ (𝐺 ∈ Grp → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑠))𝑓:𝑋–1-1-onto→𝑠) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∃wrex 3067 ↦ cmpt 5231 ran crn 5679 –1-1-onto→wf1o 6547 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 ↾s cress 17209 +gcplusg 17233 Grpcgrp 18890 SubGrpcsubg 19075 GrpHom cghm 19167 SymGrpcsymg 19321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-uz 12854 df-fz 13518 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-tset 17252 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-mhm 18740 df-submnd 18741 df-efmnd 18821 df-grp 18893 df-minusg 18894 df-sbg 18895 df-subg 19078 df-ghm 19168 df-ga 19241 df-symg 19322 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |