Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ccfldsrarelvec Structured version   Visualization version   GIF version

Theorem ccfldsrarelvec 33557
Description: The subring algebra of the complex numbers over the real numbers is a left vector space. (Contributed by Thierry Arnoux, 20-Aug-2023.)
Assertion
Ref Expression
ccfldsrarelvec ((subringAlg ‘ℂfld)‘ℝ) ∈ LVec

Proof of Theorem ccfldsrarelvec
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnring 21382 . . . . 5 fld ∈ Ring
2 ax-resscn 11215 . . . . 5 ℝ ⊆ ℂ
3 eqidd 2727 . . . . . . 7 (⊤ → ((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg ‘ℂfld)‘ℝ))
43mptru 1541 . . . . . 6 ((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg ‘ℂfld)‘ℝ)
5 cnfldbas 21347 . . . . . 6 ℂ = (Base‘ℂfld)
64, 5sraring 21172 . . . . 5 ((ℂfld ∈ Ring ∧ ℝ ⊆ ℂ) → ((subringAlg ‘ℂfld)‘ℝ) ∈ Ring)
71, 2, 6mp2an 690 . . . 4 ((subringAlg ‘ℂfld)‘ℝ) ∈ Ring
8 ringgrp 20221 . . . 4 (((subringAlg ‘ℂfld)‘ℝ) ∈ Ring → ((subringAlg ‘ℂfld)‘ℝ) ∈ Grp)
97, 8ax-mp 5 . . 3 ((subringAlg ‘ℂfld)‘ℝ) ∈ Grp
10 refld 21615 . . . . . 6 fld ∈ Field
11 isfld 20718 . . . . . 6 (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing))
1210, 11mpbi 229 . . . . 5 (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing)
1312simpli 482 . . . 4 fld ∈ DivRing
14 drngring 20714 . . . 4 (ℝfld ∈ DivRing → ℝfld ∈ Ring)
1513, 14ax-mp 5 . . 3 fld ∈ Ring
16 simpr1 1191 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑏 ∈ ℝ)
1716recnd 11292 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑏 ∈ ℂ)
18 simpr3 1193 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑦 ∈ ℂ)
1917, 18mulcld 11284 . . . . . . 7 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑏 · 𝑦) ∈ ℂ)
20 simpr2 1192 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑥 ∈ ℂ)
2117, 18, 20adddid 11288 . . . . . . 7 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)))
22 simpl 481 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑎 ∈ ℝ)
2322recnd 11292 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑎 ∈ ℂ)
2423, 17, 18adddird 11289 . . . . . . 7 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦)))
2519, 21, 243jca 1125 . . . . . 6 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))))
2623, 17, 18mulassd 11287 . . . . . 6 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦)))
2718mullidd 11282 . . . . . 6 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (1 · 𝑦) = 𝑦)
2825, 26, 27jca32 514 . . . . 5 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) ∧ (((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦)) ∧ (1 · 𝑦) = 𝑦)))
2928ralrimivvva 3194 . . . 4 (𝑎 ∈ ℝ → ∀𝑏 ∈ ℝ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) ∧ (((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦)) ∧ (1 · 𝑦) = 𝑦)))
3029rgen 3053 . . 3 𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) ∧ (((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦)) ∧ (1 · 𝑦) = 𝑦))
312, 5sseqtri 4016 . . . . . . . 8 ℝ ⊆ (Base‘ℂfld)
3231a1i 11 . . . . . . 7 (⊤ → ℝ ⊆ (Base‘ℂfld))
333, 32srabase 21156 . . . . . 6 (⊤ → (Base‘ℂfld) = (Base‘((subringAlg ‘ℂfld)‘ℝ)))
3433mptru 1541 . . . . 5 (Base‘ℂfld) = (Base‘((subringAlg ‘ℂfld)‘ℝ))
355, 34eqtri 2754 . . . 4 ℂ = (Base‘((subringAlg ‘ℂfld)‘ℝ))
36 cnfldadd 21349 . . . . 5 + = (+g‘ℂfld)
373, 32sraaddg 21158 . . . . . 6 (⊤ → (+g‘ℂfld) = (+g‘((subringAlg ‘ℂfld)‘ℝ)))
3837mptru 1541 . . . . 5 (+g‘ℂfld) = (+g‘((subringAlg ‘ℂfld)‘ℝ))
3936, 38eqtri 2754 . . . 4 + = (+g‘((subringAlg ‘ℂfld)‘ℝ))
40 cnfldmul 21351 . . . . 5 · = (.r‘ℂfld)
413, 32sravsca 21164 . . . . . 6 (⊤ → (.r‘ℂfld) = ( ·𝑠 ‘((subringAlg ‘ℂfld)‘ℝ)))
4241mptru 1541 . . . . 5 (.r‘ℂfld) = ( ·𝑠 ‘((subringAlg ‘ℂfld)‘ℝ))
4340, 42eqtri 2754 . . . 4 · = ( ·𝑠 ‘((subringAlg ‘ℂfld)‘ℝ))
44 df-refld 21601 . . . . 5 fld = (ℂflds ℝ)
453, 32srasca 21162 . . . . . 6 (⊤ → (ℂflds ℝ) = (Scalar‘((subringAlg ‘ℂfld)‘ℝ)))
4645mptru 1541 . . . . 5 (ℂflds ℝ) = (Scalar‘((subringAlg ‘ℂfld)‘ℝ))
4744, 46eqtri 2754 . . . 4 fld = (Scalar‘((subringAlg ‘ℂfld)‘ℝ))
48 rebase 21602 . . . 4 ℝ = (Base‘ℝfld)
49 replusg 21606 . . . 4 + = (+g‘ℝfld)
50 remulr 21607 . . . 4 · = (.r‘ℝfld)
51 re1r 21609 . . . 4 1 = (1r‘ℝfld)
5235, 39, 43, 47, 48, 49, 50, 51islmod 20840 . . 3 (((subringAlg ‘ℂfld)‘ℝ) ∈ LMod ↔ (((subringAlg ‘ℂfld)‘ℝ) ∈ Grp ∧ ℝfld ∈ Ring ∧ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) ∧ (((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦)) ∧ (1 · 𝑦) = 𝑦))))
539, 15, 30, 52mpbir3an 1338 . 2 ((subringAlg ‘ℂfld)‘ℝ) ∈ LMod
5447islvec 21082 . 2 (((subringAlg ‘ℂfld)‘ℝ) ∈ LVec ↔ (((subringAlg ‘ℂfld)‘ℝ) ∈ LMod ∧ ℝfld ∈ DivRing))
5553, 13, 54mpbir2an 709 1 ((subringAlg ‘ℂfld)‘ℝ) ∈ LVec
Colors of variables: wff setvar class
Syntax hints:  wa 394  w3a 1084   = wceq 1534  wtru 1535  wcel 2099  wral 3051  wss 3947  cfv 6554  (class class class)co 7424  cc 11156  cr 11157  1c1 11159   + caddc 11161   · cmul 11163  Basecbs 17213  s cress 17242  +gcplusg 17266  .rcmulr 17267  Scalarcsca 17269   ·𝑠 cvsca 17270  Grpcgrp 18928  Ringcrg 20216  CRingccrg 20217  DivRingcdr 20707  Fieldcfield 20708  LModclmod 20836  LVecclvec 21080  subringAlg csra 21149  fldccnfld 21343  fldcrefld 21600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-addf 11237  ax-mulf 11238
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-tpos 8241  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-fz 13539  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-0g 17456  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-grp 18931  df-minusg 18932  df-subg 19117  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-cring 20219  df-oppr 20316  df-dvdsr 20339  df-unit 20340  df-invr 20370  df-dvr 20383  df-subrng 20528  df-subrg 20553  df-drng 20709  df-field 20710  df-lmod 20838  df-lvec 21081  df-sra 21151  df-cnfld 21344  df-refld 21601
This theorem is referenced by:  ccfldextdgrr  33558
  Copyright terms: Public domain W3C validator
OSZAR »