![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chrnzr | Structured version Visualization version GIF version |
Description: Nonzero rings are precisely those with characteristic not 1. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
chrnzr | ⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ (chr‘𝑅) ≠ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
2 | eqid 2728 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
3 | 1, 2 | isnzr 20453 | . . 3 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
4 | 3 | baib 535 | . 2 ⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ (1r‘𝑅) ≠ (0g‘𝑅))) |
5 | 1z 12623 | . . . . 5 ⊢ 1 ∈ ℤ | |
6 | eqid 2728 | . . . . . 6 ⊢ (chr‘𝑅) = (chr‘𝑅) | |
7 | eqid 2728 | . . . . . 6 ⊢ (ℤRHom‘𝑅) = (ℤRHom‘𝑅) | |
8 | 6, 7, 2 | chrdvds 21456 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ ℤ) → ((chr‘𝑅) ∥ 1 ↔ ((ℤRHom‘𝑅)‘1) = (0g‘𝑅))) |
9 | 5, 8 | mpan2 690 | . . . 4 ⊢ (𝑅 ∈ Ring → ((chr‘𝑅) ∥ 1 ↔ ((ℤRHom‘𝑅)‘1) = (0g‘𝑅))) |
10 | 6 | chrcl 21454 | . . . . 5 ⊢ (𝑅 ∈ Ring → (chr‘𝑅) ∈ ℕ0) |
11 | dvds1 16296 | . . . . 5 ⊢ ((chr‘𝑅) ∈ ℕ0 → ((chr‘𝑅) ∥ 1 ↔ (chr‘𝑅) = 1)) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝑅 ∈ Ring → ((chr‘𝑅) ∥ 1 ↔ (chr‘𝑅) = 1)) |
13 | 7, 1 | zrh1 21438 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((ℤRHom‘𝑅)‘1) = (1r‘𝑅)) |
14 | 13 | eqeq1d 2730 | . . . 4 ⊢ (𝑅 ∈ Ring → (((ℤRHom‘𝑅)‘1) = (0g‘𝑅) ↔ (1r‘𝑅) = (0g‘𝑅))) |
15 | 9, 12, 14 | 3bitr3d 309 | . . 3 ⊢ (𝑅 ∈ Ring → ((chr‘𝑅) = 1 ↔ (1r‘𝑅) = (0g‘𝑅))) |
16 | 15 | necon3bid 2982 | . 2 ⊢ (𝑅 ∈ Ring → ((chr‘𝑅) ≠ 1 ↔ (1r‘𝑅) ≠ (0g‘𝑅))) |
17 | 4, 16 | bitr4d 282 | 1 ⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ (chr‘𝑅) ≠ 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 class class class wbr 5148 ‘cfv 6548 1c1 11140 ℕ0cn0 12503 ℤcz 12589 ∥ cdvds 16231 0gc0g 17421 1rcur 20121 Ringcrg 20173 NzRingcnzr 20451 ℤRHomczrh 21425 chrcchr 21427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 ax-addf 11218 ax-mulf 11219 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9466 df-inf 9467 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-uz 12854 df-rp 13008 df-fz 13518 df-fl 13790 df-mod 13868 df-seq 14000 df-exp 14060 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-dvds 16232 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-starv 17248 df-tset 17252 df-ple 17253 df-ds 17255 df-unif 17256 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-mhm 18740 df-grp 18893 df-minusg 18894 df-sbg 18895 df-mulg 19024 df-subg 19078 df-ghm 19168 df-od 19483 df-cmn 19737 df-abl 19738 df-mgp 20075 df-rng 20093 df-ur 20122 df-ring 20175 df-cring 20176 df-rhm 20411 df-nzr 20452 df-subrng 20483 df-subrg 20508 df-cnfld 21280 df-zring 21373 df-zrh 21429 df-chr 21431 |
This theorem is referenced by: domnchr 21462 |
Copyright terms: Public domain | W3C validator |