MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcndslem1 Structured version   Visualization version   GIF version

Theorem climcndslem1 15821
Description: Lemma for climcnds 15823: bound the original series by the condensed series. (Contributed by Mario Carneiro, 18-Jul-2014.)
Hypotheses
Ref Expression
climcnds.1 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
climcnds.2 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
climcnds.3 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climcnds.4 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
Assertion
Ref Expression
climcndslem1 ((𝜑𝑁 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑘,𝑛,𝐹   𝑘,𝐺,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝑁(𝑘,𝑛)

Proof of Theorem climcndslem1
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7421 . . . . . . . . . . 11 (𝑥 = 0 → (𝑥 + 1) = (0 + 1))
2 0p1e1 12358 . . . . . . . . . . 11 (0 + 1) = 1
31, 2eqtrdi 2784 . . . . . . . . . 10 (𝑥 = 0 → (𝑥 + 1) = 1)
43oveq2d 7430 . . . . . . . . 9 (𝑥 = 0 → (2↑(𝑥 + 1)) = (2↑1))
5 2cn 12311 . . . . . . . . . . 11 2 ∈ ℂ
6 exp1 14058 . . . . . . . . . . 11 (2 ∈ ℂ → (2↑1) = 2)
75, 6ax-mp 5 . . . . . . . . . 10 (2↑1) = 2
8 df-2 12299 . . . . . . . . . 10 2 = (1 + 1)
97, 8eqtri 2756 . . . . . . . . 9 (2↑1) = (1 + 1)
104, 9eqtrdi 2784 . . . . . . . 8 (𝑥 = 0 → (2↑(𝑥 + 1)) = (1 + 1))
1110oveq1d 7429 . . . . . . 7 (𝑥 = 0 → ((2↑(𝑥 + 1)) − 1) = ((1 + 1) − 1))
12 ax-1cn 11190 . . . . . . . 8 1 ∈ ℂ
1312, 12pncan3oi 11500 . . . . . . 7 ((1 + 1) − 1) = 1
1411, 13eqtrdi 2784 . . . . . 6 (𝑥 = 0 → ((2↑(𝑥 + 1)) − 1) = 1)
1514fveq2d 6895 . . . . 5 (𝑥 = 0 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘1))
16 fveq2 6891 . . . . 5 (𝑥 = 0 → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘0))
1715, 16breq12d 5155 . . . 4 (𝑥 = 0 → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘1) ≤ (seq0( + , 𝐺)‘0)))
1817imbi2d 340 . . 3 (𝑥 = 0 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘1) ≤ (seq0( + , 𝐺)‘0))))
19 oveq1 7421 . . . . . . 7 (𝑥 = 𝑗 → (𝑥 + 1) = (𝑗 + 1))
2019oveq2d 7430 . . . . . 6 (𝑥 = 𝑗 → (2↑(𝑥 + 1)) = (2↑(𝑗 + 1)))
2120fvoveq1d 7436 . . . . 5 (𝑥 = 𝑗 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)))
22 fveq2 6891 . . . . 5 (𝑥 = 𝑗 → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘𝑗))
2321, 22breq12d 5155 . . . 4 (𝑥 = 𝑗 → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗)))
2423imbi2d 340 . . 3 (𝑥 = 𝑗 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗))))
25 oveq1 7421 . . . . . . 7 (𝑥 = (𝑗 + 1) → (𝑥 + 1) = ((𝑗 + 1) + 1))
2625oveq2d 7430 . . . . . 6 (𝑥 = (𝑗 + 1) → (2↑(𝑥 + 1)) = (2↑((𝑗 + 1) + 1)))
2726fvoveq1d 7436 . . . . 5 (𝑥 = (𝑗 + 1) → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)))
28 fveq2 6891 . . . . 5 (𝑥 = (𝑗 + 1) → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘(𝑗 + 1)))
2927, 28breq12d 5155 . . . 4 (𝑥 = (𝑗 + 1) → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1))))
3029imbi2d 340 . . 3 (𝑥 = (𝑗 + 1) → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1)))))
31 oveq1 7421 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 + 1) = (𝑁 + 1))
3231oveq2d 7430 . . . . . 6 (𝑥 = 𝑁 → (2↑(𝑥 + 1)) = (2↑(𝑁 + 1)))
3332fvoveq1d 7436 . . . . 5 (𝑥 = 𝑁 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)))
34 fveq2 6891 . . . . 5 (𝑥 = 𝑁 → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘𝑁))
3533, 34breq12d 5155 . . . 4 (𝑥 = 𝑁 → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁)))
3635imbi2d 340 . . 3 (𝑥 = 𝑁 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁))))
37 fveq2 6891 . . . . . . . 8 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
3837eleq1d 2814 . . . . . . 7 (𝑘 = 1 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘1) ∈ ℝ))
39 climcnds.1 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
4039ralrimiva 3142 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
41 1nn 12247 . . . . . . . 8 1 ∈ ℕ
4241a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
4338, 40, 42rspcdva 3609 . . . . . 6 (𝜑 → (𝐹‘1) ∈ ℝ)
4443leidd 11804 . . . . 5 (𝜑 → (𝐹‘1) ≤ (𝐹‘1))
4543recnd 11266 . . . . . 6 (𝜑 → (𝐹‘1) ∈ ℂ)
4645mullidd 11256 . . . . 5 (𝜑 → (1 · (𝐹‘1)) = (𝐹‘1))
4744, 46breqtrrd 5170 . . . 4 (𝜑 → (𝐹‘1) ≤ (1 · (𝐹‘1)))
48 1z 12616 . . . . 5 1 ∈ ℤ
49 eqidd 2729 . . . . 5 (𝜑 → (𝐹‘1) = (𝐹‘1))
5048, 49seq1i 14006 . . . 4 (𝜑 → (seq1( + , 𝐹)‘1) = (𝐹‘1))
51 0z 12593 . . . . 5 0 ∈ ℤ
52 fveq2 6891 . . . . . . 7 (𝑛 = 0 → (𝐺𝑛) = (𝐺‘0))
53 oveq2 7422 . . . . . . . . 9 (𝑛 = 0 → (2↑𝑛) = (2↑0))
54 exp0 14056 . . . . . . . . . 10 (2 ∈ ℂ → (2↑0) = 1)
555, 54ax-mp 5 . . . . . . . . 9 (2↑0) = 1
5653, 55eqtrdi 2784 . . . . . . . 8 (𝑛 = 0 → (2↑𝑛) = 1)
5756fveq2d 6895 . . . . . . . 8 (𝑛 = 0 → (𝐹‘(2↑𝑛)) = (𝐹‘1))
5856, 57oveq12d 7432 . . . . . . 7 (𝑛 = 0 → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = (1 · (𝐹‘1)))
5952, 58eqeq12d 2744 . . . . . 6 (𝑛 = 0 → ((𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘0) = (1 · (𝐹‘1))))
60 climcnds.4 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
6160ralrimiva 3142 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ0 (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
62 0nn0 12511 . . . . . . 7 0 ∈ ℕ0
6362a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
6459, 61, 63rspcdva 3609 . . . . 5 (𝜑 → (𝐺‘0) = (1 · (𝐹‘1)))
6551, 64seq1i 14006 . . . 4 (𝜑 → (seq0( + , 𝐺)‘0) = (1 · (𝐹‘1)))
6647, 50, 653brtr4d 5174 . . 3 (𝜑 → (seq1( + , 𝐹)‘1) ≤ (seq0( + , 𝐺)‘0))
67 fzfid 13964 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin)
68 simpl 482 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → 𝜑)
69 2nn 12309 . . . . . . . . . . . 12 2 ∈ ℕ
70 peano2nn0 12536 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
7170adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ ℕ0)
72 nnexpcl 14065 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ)
7369, 71, 72sylancr 586 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ)
74 elfzuz 13523 . . . . . . . . . . 11 (𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) → 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1))))
75 eluznn 12926 . . . . . . . . . . 11 (((2↑(𝑗 + 1)) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1)))) → 𝑘 ∈ ℕ)
7673, 74, 75syl2an 595 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) → 𝑘 ∈ ℕ)
7768, 76, 39syl2an2r 684 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹𝑘) ∈ ℝ)
78 fveq2 6891 . . . . . . . . . . . 12 (𝑘 = (2↑(𝑗 + 1)) → (𝐹𝑘) = (𝐹‘(2↑(𝑗 + 1))))
7978eleq1d 2814 . . . . . . . . . . 11 (𝑘 = (2↑(𝑗 + 1)) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ))
8040adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
8179, 80, 73rspcdva 3609 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ)
8281adantr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ)
83 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) → 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1))))
84 simplll 774 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...𝑛)) → 𝜑)
8573adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) → (2↑(𝑗 + 1)) ∈ ℕ)
86 elfzuz 13523 . . . . . . . . . . . . . 14 (𝑘 ∈ ((2↑(𝑗 + 1))...𝑛) → 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1))))
8785, 86, 75syl2an 595 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...𝑛)) → 𝑘 ∈ ℕ)
8884, 87, 39syl2anc 583 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...𝑛)) → (𝐹𝑘) ∈ ℝ)
89 simplll 774 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1))) → 𝜑)
90 elfzuz 13523 . . . . . . . . . . . . . 14 (𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1)) → 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1))))
9185, 90, 75syl2an 595 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1))) → 𝑘 ∈ ℕ)
92 climcnds.3 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
9389, 91, 92syl2anc 583 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
9483, 88, 93monoord2 14024 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) → (𝐹𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))))
9594ralrimiva 3142 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ∀𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))(𝐹𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))))
96 fveq2 6891 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
9796breq1d 5152 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((𝐹𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))) ↔ (𝐹𝑘) ≤ (𝐹‘(2↑(𝑗 + 1)))))
9897rspccva 3607 . . . . . . . . . 10 ((∀𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))(𝐹𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))) ∧ 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1)))) → (𝐹𝑘) ≤ (𝐹‘(2↑(𝑗 + 1))))
9995, 74, 98syl2an 595 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹𝑘) ≤ (𝐹‘(2↑(𝑗 + 1))))
10067, 77, 82, 99fsumle 15771 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ≤ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1))))
101 fzfid 13964 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (1...((2↑(𝑗 + 1)) − 1)) ∈ Fin)
102 hashcl 14341 . . . . . . . . . . . . 13 ((1...((2↑(𝑗 + 1)) − 1)) ∈ Fin → (♯‘(1...((2↑(𝑗 + 1)) − 1))) ∈ ℕ0)
103101, 102syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑(𝑗 + 1)) − 1))) ∈ ℕ0)
104103nn0cnd 12558 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑(𝑗 + 1)) − 1))) ∈ ℂ)
10573nnred 12251 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℝ)
106105recnd 11266 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℂ)
107 hashcl 14341 . . . . . . . . . . . . 13 (((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin → (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) ∈ ℕ0)
10867, 107syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) ∈ ℕ0)
109108nn0cnd 12558 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) ∈ ℂ)
110 2z 12618 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℤ
111 zexpcl 14067 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℤ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℤ)
112110, 71, 111sylancr 586 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℤ)
113 2re 12310 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ
114 1le2 12445 . . . . . . . . . . . . . . . . . . . . 21 1 ≤ 2
115 nn0p1nn 12535 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ)
116115adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ ℕ)
117 nnuz 12889 . . . . . . . . . . . . . . . . . . . . . 22 ℕ = (ℤ‘1)
118116, 117eleqtrdi 2839 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ (ℤ‘1))
119 leexp2a 14162 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℝ ∧ 1 ≤ 2 ∧ (𝑗 + 1) ∈ (ℤ‘1)) → (2↑1) ≤ (2↑(𝑗 + 1)))
120113, 114, 118, 119mp3an12i 1462 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ0) → (2↑1) ≤ (2↑(𝑗 + 1)))
1217, 120eqbrtrrid 5178 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ0) → 2 ≤ (2↑(𝑗 + 1)))
122110eluz1i 12854 . . . . . . . . . . . . . . . . . . 19 ((2↑(𝑗 + 1)) ∈ (ℤ‘2) ↔ ((2↑(𝑗 + 1)) ∈ ℤ ∧ 2 ≤ (2↑(𝑗 + 1))))
123112, 121, 122sylanbrc 582 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ (ℤ‘2))
124 uz2m1nn 12931 . . . . . . . . . . . . . . . . . 18 ((2↑(𝑗 + 1)) ∈ (ℤ‘2) → ((2↑(𝑗 + 1)) − 1) ∈ ℕ)
125123, 124syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ ℕ)
126125, 117eleqtrdi 2839 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ (ℤ‘1))
127 peano2zm 12629 . . . . . . . . . . . . . . . . . 18 ((2↑(𝑗 + 1)) ∈ ℤ → ((2↑(𝑗 + 1)) − 1) ∈ ℤ)
128112, 127syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ ℤ)
129 peano2nn0 12536 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 + 1) ∈ ℕ0 → ((𝑗 + 1) + 1) ∈ ℕ0)
13071, 129syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ0) → ((𝑗 + 1) + 1) ∈ ℕ0)
131 zexpcl 14067 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ ((𝑗 + 1) + 1) ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) ∈ ℤ)
132110, 130, 131sylancr 586 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) ∈ ℤ)
133 peano2zm 12629 . . . . . . . . . . . . . . . . . 18 ((2↑((𝑗 + 1) + 1)) ∈ ℤ → ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℤ)
134132, 133syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℤ)
135112zred 12690 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℝ)
136132zred 12690 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) ∈ ℝ)
137 1red 11239 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → 1 ∈ ℝ)
13871nn0zd 12608 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ ℤ)
139 uzid 12861 . . . . . . . . . . . . . . . . . . 19 ((𝑗 + 1) ∈ ℤ → (𝑗 + 1) ∈ (ℤ‘(𝑗 + 1)))
140 peano2uz 12909 . . . . . . . . . . . . . . . . . . 19 ((𝑗 + 1) ∈ (ℤ‘(𝑗 + 1)) → ((𝑗 + 1) + 1) ∈ (ℤ‘(𝑗 + 1)))
141 leexp2a 14162 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ ∧ 1 ≤ 2 ∧ ((𝑗 + 1) + 1) ∈ (ℤ‘(𝑗 + 1))) → (2↑(𝑗 + 1)) ≤ (2↑((𝑗 + 1) + 1)))
142113, 114, 141mp3an12 1448 . . . . . . . . . . . . . . . . . . 19 (((𝑗 + 1) + 1) ∈ (ℤ‘(𝑗 + 1)) → (2↑(𝑗 + 1)) ≤ (2↑((𝑗 + 1) + 1)))
143138, 139, 140, 1424syl 19 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ≤ (2↑((𝑗 + 1) + 1)))
144135, 136, 137, 143lesub1dd 11854 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ≤ ((2↑((𝑗 + 1) + 1)) − 1))
145 eluz2 12852 . . . . . . . . . . . . . . . . 17 (((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘((2↑(𝑗 + 1)) − 1)) ↔ (((2↑(𝑗 + 1)) − 1) ∈ ℤ ∧ ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℤ ∧ ((2↑(𝑗 + 1)) − 1) ≤ ((2↑((𝑗 + 1) + 1)) − 1)))
146128, 134, 144, 145syl3anbrc 1341 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘((2↑(𝑗 + 1)) − 1)))
147 elfzuzb 13521 . . . . . . . . . . . . . . . 16 (((2↑(𝑗 + 1)) − 1) ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)) ↔ (((2↑(𝑗 + 1)) − 1) ∈ (ℤ‘1) ∧ ((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘((2↑(𝑗 + 1)) − 1))))
148126, 146, 147sylanbrc 582 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)))
149 fzsplit 13553 . . . . . . . . . . . . . . 15 (((2↑(𝑗 + 1)) − 1) ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)) → (1...((2↑((𝑗 + 1) + 1)) − 1)) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((((2↑(𝑗 + 1)) − 1) + 1)...((2↑((𝑗 + 1) + 1)) − 1))))
150148, 149syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (1...((2↑((𝑗 + 1) + 1)) − 1)) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((((2↑(𝑗 + 1)) − 1) + 1)...((2↑((𝑗 + 1) + 1)) − 1))))
151 npcan 11493 . . . . . . . . . . . . . . . . 17 (((2↑(𝑗 + 1)) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑(𝑗 + 1)) − 1) + 1) = (2↑(𝑗 + 1)))
152106, 12, 151sylancl 585 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → (((2↑(𝑗 + 1)) − 1) + 1) = (2↑(𝑗 + 1)))
153152oveq1d 7429 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → ((((2↑(𝑗 + 1)) − 1) + 1)...((2↑((𝑗 + 1) + 1)) − 1)) = ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))
154153uneq2d 4159 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((((2↑(𝑗 + 1)) − 1) + 1)...((2↑((𝑗 + 1) + 1)) − 1))) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))))
155150, 154eqtrd 2768 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (1...((2↑((𝑗 + 1) + 1)) − 1)) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))))
156155fveq2d 6895 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = (♯‘((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))))
157 expp1 14059 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) = ((2↑(𝑗 + 1)) · 2))
1585, 71, 157sylancr 586 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) = ((2↑(𝑗 + 1)) · 2))
159106times2d 12480 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) · 2) = ((2↑(𝑗 + 1)) + (2↑(𝑗 + 1))))
160158, 159eqtrd 2768 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) = ((2↑(𝑗 + 1)) + (2↑(𝑗 + 1))))
161160oveq1d 7429 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) = (((2↑(𝑗 + 1)) + (2↑(𝑗 + 1))) − 1))
162 1cnd 11233 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → 1 ∈ ℂ)
163106, 106, 162addsubd 11616 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (((2↑(𝑗 + 1)) + (2↑(𝑗 + 1))) − 1) = (((2↑(𝑗 + 1)) − 1) + (2↑(𝑗 + 1))))
164161, 163eqtrd 2768 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) = (((2↑(𝑗 + 1)) − 1) + (2↑(𝑗 + 1))))
165 uztrn 12864 . . . . . . . . . . . . . . . . 17 ((((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘((2↑(𝑗 + 1)) − 1)) ∧ ((2↑(𝑗 + 1)) − 1) ∈ (ℤ‘1)) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘1))
166146, 126, 165syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘1))
167166, 117eleqtrrdi 2840 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℕ)
168167nnnn0d 12556 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℕ0)
169 hashfz1 14331 . . . . . . . . . . . . . 14 (((2↑((𝑗 + 1) + 1)) − 1) ∈ ℕ0 → (♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = ((2↑((𝑗 + 1) + 1)) − 1))
170168, 169syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = ((2↑((𝑗 + 1) + 1)) − 1))
171125nnnn0d 12556 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ ℕ0)
172 hashfz1 14331 . . . . . . . . . . . . . . 15 (((2↑(𝑗 + 1)) − 1) ∈ ℕ0 → (♯‘(1...((2↑(𝑗 + 1)) − 1))) = ((2↑(𝑗 + 1)) − 1))
173171, 172syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑(𝑗 + 1)) − 1))) = ((2↑(𝑗 + 1)) − 1))
174173oveq1d 7429 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (2↑(𝑗 + 1))) = (((2↑(𝑗 + 1)) − 1) + (2↑(𝑗 + 1))))
175164, 170, 1743eqtr4d 2778 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (2↑(𝑗 + 1))))
176105ltm1d 12170 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) < (2↑(𝑗 + 1)))
177 fzdisj 13554 . . . . . . . . . . . . . 14 (((2↑(𝑗 + 1)) − 1) < (2↑(𝑗 + 1)) → ((1...((2↑(𝑗 + 1)) − 1)) ∩ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) = ∅)
178176, 177syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → ((1...((2↑(𝑗 + 1)) − 1)) ∩ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) = ∅)
179 hashun 14367 . . . . . . . . . . . . 13 (((1...((2↑(𝑗 + 1)) − 1)) ∈ Fin ∧ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin ∧ ((1...((2↑(𝑗 + 1)) − 1)) ∩ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) = ∅) → (♯‘((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))) = ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))))
180101, 67, 178, 179syl3anc 1369 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (♯‘((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))) = ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))))
181156, 175, 1803eqtr3d 2776 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (2↑(𝑗 + 1))) = ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))))
182104, 106, 109, 181addcanad 11443 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) = (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))))
183182oveq1d 7429 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))) = ((♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) · (𝐹‘(2↑(𝑗 + 1)))))
184 fveq2 6891 . . . . . . . . . . 11 (𝑛 = (𝑗 + 1) → (𝐺𝑛) = (𝐺‘(𝑗 + 1)))
185 oveq2 7422 . . . . . . . . . . . 12 (𝑛 = (𝑗 + 1) → (2↑𝑛) = (2↑(𝑗 + 1)))
186185fveq2d 6895 . . . . . . . . . . . 12 (𝑛 = (𝑗 + 1) → (𝐹‘(2↑𝑛)) = (𝐹‘(2↑(𝑗 + 1))))
187185, 186oveq12d 7432 . . . . . . . . . . 11 (𝑛 = (𝑗 + 1) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))))
188184, 187eqeq12d 2744 . . . . . . . . . 10 (𝑛 = (𝑗 + 1) → ((𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1))))))
18961adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ∀𝑛 ∈ ℕ0 (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
190188, 189, 71rspcdva 3609 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))))
19181recnd 11266 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℂ)
192 fsumconst 15762 . . . . . . . . . 10 ((((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin ∧ (𝐹‘(2↑(𝑗 + 1))) ∈ ℂ) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1))) = ((♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) · (𝐹‘(2↑(𝑗 + 1)))))
19367, 191, 192syl2anc 583 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1))) = ((♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) · (𝐹‘(2↑(𝑗 + 1)))))
194183, 190, 1933eqtr4d 2778 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑗 + 1)) = Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1))))
195100, 194breqtrrd 5170 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ≤ (𝐺‘(𝑗 + 1)))
196 elfznn 13556 . . . . . . . . . 10 (𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1)) → 𝑘 ∈ ℕ)
19768, 196, 39syl2an 595 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) → (𝐹𝑘) ∈ ℝ)
198101, 197fsumrecl 15706 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ∈ ℝ)
19967, 77fsumrecl 15706 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ∈ ℝ)
200 nn0uz 12888 . . . . . . . . . 10 0 = (ℤ‘0)
201 0zd 12594 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
202 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
203 nnexpcl 14065 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
20469, 202, 203sylancr 586 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
205204nnred 12251 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℝ)
206 fveq2 6891 . . . . . . . . . . . . . 14 (𝑘 = (2↑𝑛) → (𝐹𝑘) = (𝐹‘(2↑𝑛)))
207206eleq1d 2814 . . . . . . . . . . . . 13 (𝑘 = (2↑𝑛) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(2↑𝑛)) ∈ ℝ))
20840adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
209207, 208, 204rspcdva 3609 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → (𝐹‘(2↑𝑛)) ∈ ℝ)
210205, 209remulcld 11268 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) ∈ ℝ)
21160, 210eqeltrd 2829 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℝ)
212200, 201, 211serfre 14022 . . . . . . . . 9 (𝜑 → seq0( + , 𝐺):ℕ0⟶ℝ)
213212ffvelcdmda 7088 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (seq0( + , 𝐺)‘𝑗) ∈ ℝ)
214135, 81remulcld 11268 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))) ∈ ℝ)
215190, 214eqeltrd 2829 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑗 + 1)) ∈ ℝ)
216 le2add 11720 . . . . . . . 8 (((Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ∈ ℝ ∧ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ∈ ℝ) ∧ ((seq0( + , 𝐺)‘𝑗) ∈ ℝ ∧ (𝐺‘(𝑗 + 1)) ∈ ℝ)) → ((Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ≤ (seq0( + , 𝐺)‘𝑗) ∧ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ≤ (𝐺‘(𝑗 + 1))) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))))
217198, 199, 213, 215, 216syl22anc 838 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ≤ (seq0( + , 𝐺)‘𝑗) ∧ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ≤ (𝐺‘(𝑗 + 1))) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))))
218195, 217mpan2d 693 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ≤ (seq0( + , 𝐺)‘𝑗) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))))
219 eqidd 2729 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) → (𝐹𝑘) = (𝐹𝑘))
22039recnd 11266 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
22168, 196, 220syl2an 595 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) → (𝐹𝑘) ∈ ℂ)
222219, 126, 221fsumser 15702 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) = (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)))
223222eqcomd 2734 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) = Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘))
224223breq1d 5152 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗) ↔ Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ≤ (seq0( + , 𝐺)‘𝑗)))
225 eqidd 2729 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹𝑘) = (𝐹𝑘))
226 elfznn 13556 . . . . . . . . . 10 (𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)) → 𝑘 ∈ ℕ)
22768, 226, 220syl2an 595 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹𝑘) ∈ ℂ)
228225, 166, 227fsumser 15702 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) = (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)))
229 fzfid 13964 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (1...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin)
230178, 155, 229, 227fsumsplit 15713 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) = (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)))
231228, 230eqtr3d 2770 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) = (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)))
232 simpr 484 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
233232, 200eleqtrdi 2839 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ (ℤ‘0))
234 seqp1 14007 . . . . . . . 8 (𝑗 ∈ (ℤ‘0) → (seq0( + , 𝐺)‘(𝑗 + 1)) = ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))
235233, 234syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (seq0( + , 𝐺)‘(𝑗 + 1)) = ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))
236231, 235breq12d 5155 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1)) ↔ (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))))
237218, 224, 2363imtr4d 294 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗) → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1))))
238237expcom 413 . . . 4 (𝑗 ∈ ℕ0 → (𝜑 → ((seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗) → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1)))))
239238a2d 29 . . 3 (𝑗 ∈ ℕ0 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗)) → (𝜑 → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1)))))
24018, 24, 30, 36, 66, 239nn0ind 12681 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁)))
241240impcom 407 1 ((𝜑𝑁 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3057  cun 3943  cin 3944  c0 4318   class class class wbr 5142  cfv 6542  (class class class)co 7414  Fincfn 8957  cc 11130  cr 11131  0cc0 11132  1c1 11133   + caddc 11135   · cmul 11137   < clt 11272  cle 11273  cmin 11468  cn 12236  2c2 12291  0cn0 12496  cz 12582  cuz 12846  ...cfz 13510  seqcseq 13992  cexp 14052  chash 14315  Σcsu 15658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-oi 9527  df-dju 9918  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-n0 12497  df-z 12583  df-uz 12847  df-rp 13001  df-ico 13356  df-fz 13511  df-fzo 13654  df-seq 13993  df-exp 14053  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15458  df-sum 15659
This theorem is referenced by:  climcnds  15823
  Copyright terms: Public domain W3C validator
OSZAR »