![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmet | Structured version Visualization version GIF version |
Description: The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006.) |
Ref | Expression |
---|---|
cnmet | ⊢ (abs ∘ − ) ∈ (Met‘ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 11213 | . 2 ⊢ ℂ ∈ V | |
2 | absf 15310 | . . 3 ⊢ abs:ℂ⟶ℝ | |
3 | subf 11486 | . . 3 ⊢ − :(ℂ × ℂ)⟶ℂ | |
4 | fco 6741 | . . 3 ⊢ ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
5 | 2, 3, 4 | mp2an 691 | . 2 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℝ |
6 | subcl 11483 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 − 𝑦) ∈ ℂ) | |
7 | 6 | abs00ad 15263 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥 − 𝑦)) = 0 ↔ (𝑥 − 𝑦) = 0)) |
8 | eqid 2728 | . . . . . 6 ⊢ (abs ∘ − ) = (abs ∘ − ) | |
9 | 8 | cnmetdval 24680 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥 − 𝑦))) |
10 | 9 | eqcomd 2734 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 − 𝑦)) = (𝑥(abs ∘ − )𝑦)) |
11 | 10 | eqeq1d 2730 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥 − 𝑦)) = 0 ↔ (𝑥(abs ∘ − )𝑦) = 0)) |
12 | subeq0 11510 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 − 𝑦) = 0 ↔ 𝑥 = 𝑦)) | |
13 | 7, 11, 12 | 3bitr3d 309 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥(abs ∘ − )𝑦) = 0 ↔ 𝑥 = 𝑦)) |
14 | abs3dif 15304 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (abs‘(𝑥 − 𝑦)) ≤ ((abs‘(𝑥 − 𝑧)) + (abs‘(𝑧 − 𝑦)))) | |
15 | abssub 15299 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (abs‘(𝑥 − 𝑧)) = (abs‘(𝑧 − 𝑥))) | |
16 | 15 | oveq1d 7429 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑥 − 𝑧)) + (abs‘(𝑧 − 𝑦))) = ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
17 | 16 | 3adant2 1129 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑥 − 𝑧)) + (abs‘(𝑧 − 𝑦))) = ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
18 | 14, 17 | breqtrd 5168 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (abs‘(𝑥 − 𝑦)) ≤ ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
19 | 9 | 3adant3 1130 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥 − 𝑦))) |
20 | 8 | cnmetdval 24680 | . . . . . 6 ⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧(abs ∘ − )𝑥) = (abs‘(𝑧 − 𝑥))) |
21 | 20 | 3adant3 1130 | . . . . 5 ⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧(abs ∘ − )𝑥) = (abs‘(𝑧 − 𝑥))) |
22 | 8 | cnmetdval 24680 | . . . . . 6 ⊢ ((𝑧 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧(abs ∘ − )𝑦) = (abs‘(𝑧 − 𝑦))) |
23 | 22 | 3adant2 1129 | . . . . 5 ⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧(abs ∘ − )𝑦) = (abs‘(𝑧 − 𝑦))) |
24 | 21, 23 | oveq12d 7432 | . . . 4 ⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑧(abs ∘ − )𝑥) + (𝑧(abs ∘ − )𝑦)) = ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
25 | 24 | 3coml 1125 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧(abs ∘ − )𝑥) + (𝑧(abs ∘ − )𝑦)) = ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
26 | 18, 19, 25 | 3brtr4d 5174 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) ≤ ((𝑧(abs ∘ − )𝑥) + (𝑧(abs ∘ − )𝑦))) |
27 | 1, 5, 13, 26 | ismeti 24224 | 1 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 × cxp 5670 ∘ ccom 5676 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ℂcc 11130 ℝcr 11131 0cc0 11132 + caddc 11135 ≤ cle 11273 − cmin 11468 abscabs 15207 Metcmet 21258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9459 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-n0 12497 df-z 12583 df-uz 12847 df-rp 13001 df-seq 13993 df-exp 14053 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-met 21266 |
This theorem is referenced by: cnxmet 24682 cnfldms 24685 remet 24699 xrsdsre 24719 lebnumii 24885 cncmet 25243 cncms 25276 ovolctb 25412 dvlog2lem 26579 cnrrext 33605 cntotbnd 37263 iccbnd 37307 sblpnf 43741 |
Copyright terms: Public domain | W3C validator |