MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolctb Structured version   Visualization version   GIF version

Theorem ovolctb 25413
Description: The volume of a denumerable set is 0. (Contributed by Mario Carneiro, 17-Mar-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.)
Assertion
Ref Expression
ovolctb ((𝐴 ⊆ ℝ ∧ 𝐴 ≈ ℕ) → (vol*‘𝐴) = 0)

Proof of Theorem ovolctb
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 8968 . . 3 (ℕ ≈ 𝐴 ↔ ∃𝑓 𝑓:ℕ–1-1-onto𝐴)
2 simpll 766 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → 𝐴 ⊆ ℝ)
3 f1of 6834 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–1-1-onto𝐴𝑓:ℕ⟶𝐴)
43adantl 481 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:ℕ⟶𝐴)
54ffvelcdmda 7089 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ∈ 𝐴)
62, 5sseldd 3980 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ∈ ℝ)
76leidd 11805 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ≤ (𝑓𝑥))
8 df-br 5144 . . . . . . . . . . . 12 ((𝑓𝑥) ≤ (𝑓𝑥) ↔ ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ ≤ )
97, 8sylib 217 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ ≤ )
106, 6opelxpd 5712 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ (ℝ × ℝ))
119, 10elind 4191 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
12 df-ov 7418 . . . . . . . . . . . 12 ((𝑓𝑥) I (𝑓𝑥)) = ( I ‘⟨(𝑓𝑥), (𝑓𝑥)⟩)
13 opex 5461 . . . . . . . . . . . . 13 ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ V
14 fvi 6969 . . . . . . . . . . . . 13 (⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ V → ( I ‘⟨(𝑓𝑥), (𝑓𝑥)⟩) = ⟨(𝑓𝑥), (𝑓𝑥)⟩)
1513, 14ax-mp 5 . . . . . . . . . . . 12 ( I ‘⟨(𝑓𝑥), (𝑓𝑥)⟩) = ⟨(𝑓𝑥), (𝑓𝑥)⟩
1612, 15eqtri 2756 . . . . . . . . . . 11 ((𝑓𝑥) I (𝑓𝑥)) = ⟨(𝑓𝑥), (𝑓𝑥)⟩
1716mpteq2i 5248 . . . . . . . . . 10 (𝑥 ∈ ℕ ↦ ((𝑓𝑥) I (𝑓𝑥))) = (𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)
1811, 17fmptd 7119 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑥 ∈ ℕ ↦ ((𝑓𝑥) I (𝑓𝑥))):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
19 nnex 12243 . . . . . . . . . . . 12 ℕ ∈ V
2019a1i 11 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ℕ ∈ V)
216recnd 11267 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ∈ ℂ)
224feqmptd 6962 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓 = (𝑥 ∈ ℕ ↦ (𝑓𝑥)))
2320, 21, 21, 22, 22offval2 7700 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑓f I 𝑓) = (𝑥 ∈ ℕ ↦ ((𝑓𝑥) I (𝑓𝑥))))
2423feq1d 6702 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((𝑓f I 𝑓):ℕ⟶( ≤ ∩ (ℝ × ℝ)) ↔ (𝑥 ∈ ℕ ↦ ((𝑓𝑥) I (𝑓𝑥))):ℕ⟶( ≤ ∩ (ℝ × ℝ))))
2518, 24mpbird 257 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑓f I 𝑓):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
26 f1ofo 6841 . . . . . . . . . . . . . . 15 (𝑓:ℕ–1-1-onto𝐴𝑓:ℕ–onto𝐴)
2726adantl 481 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:ℕ–onto𝐴)
28 forn 6809 . . . . . . . . . . . . . 14 (𝑓:ℕ–onto𝐴 → ran 𝑓 = 𝐴)
2927, 28syl 17 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ran 𝑓 = 𝐴)
3029eleq2d 2815 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑦 ∈ ran 𝑓𝑦𝐴))
31 f1ofn 6835 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto𝐴𝑓 Fn ℕ)
3231adantl 481 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓 Fn ℕ)
33 fvelrnb 6954 . . . . . . . . . . . . 13 (𝑓 Fn ℕ → (𝑦 ∈ ran 𝑓 ↔ ∃𝑥 ∈ ℕ (𝑓𝑥) = 𝑦))
3432, 33syl 17 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑦 ∈ ran 𝑓 ↔ ∃𝑥 ∈ ℕ (𝑓𝑥) = 𝑦))
3530, 34bitr3d 281 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑦𝐴 ↔ ∃𝑥 ∈ ℕ (𝑓𝑥) = 𝑦))
3623, 17eqtrdi 2784 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑓f I 𝑓) = (𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩))
3736fveq1d 6894 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((𝑓f I 𝑓)‘𝑥) = ((𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)‘𝑥))
38 eqid 2728 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩) = (𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)
3938fvmpt2 7011 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℕ ∧ ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ V) → ((𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)‘𝑥) = ⟨(𝑓𝑥), (𝑓𝑥)⟩)
4013, 39mpan2 690 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℕ → ((𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)‘𝑥) = ⟨(𝑓𝑥), (𝑓𝑥)⟩)
4137, 40sylan9eq 2788 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ((𝑓f I 𝑓)‘𝑥) = ⟨(𝑓𝑥), (𝑓𝑥)⟩)
4241fveq2d 6896 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (1st ‘((𝑓f I 𝑓)‘𝑥)) = (1st ‘⟨(𝑓𝑥), (𝑓𝑥)⟩))
43 fvex 6905 . . . . . . . . . . . . . . . . 17 (𝑓𝑥) ∈ V
4443, 43op1st 7996 . . . . . . . . . . . . . . . 16 (1st ‘⟨(𝑓𝑥), (𝑓𝑥)⟩) = (𝑓𝑥)
4542, 44eqtrdi 2784 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (1st ‘((𝑓f I 𝑓)‘𝑥)) = (𝑓𝑥))
4645, 7eqbrtrd 5165 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ (𝑓𝑥))
4741fveq2d 6896 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (2nd ‘((𝑓f I 𝑓)‘𝑥)) = (2nd ‘⟨(𝑓𝑥), (𝑓𝑥)⟩))
4843, 43op2nd 7997 . . . . . . . . . . . . . . . 16 (2nd ‘⟨(𝑓𝑥), (𝑓𝑥)⟩) = (𝑓𝑥)
4947, 48eqtrdi 2784 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (2nd ‘((𝑓f I 𝑓)‘𝑥)) = (𝑓𝑥))
507, 49breqtrrd 5171 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))
5146, 50jca 511 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ (𝑓𝑥) ∧ (𝑓𝑥) ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥))))
52 breq2 5147 . . . . . . . . . . . . . 14 ((𝑓𝑥) = 𝑦 → ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ (𝑓𝑥) ↔ (1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦))
53 breq1 5146 . . . . . . . . . . . . . 14 ((𝑓𝑥) = 𝑦 → ((𝑓𝑥) ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)) ↔ 𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥))))
5452, 53anbi12d 631 . . . . . . . . . . . . 13 ((𝑓𝑥) = 𝑦 → (((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ (𝑓𝑥) ∧ (𝑓𝑥) ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥))) ↔ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
5551, 54syl5ibcom 244 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ((𝑓𝑥) = 𝑦 → ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
5655reximdva 3164 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (∃𝑥 ∈ ℕ (𝑓𝑥) = 𝑦 → ∃𝑥 ∈ ℕ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
5735, 56sylbid 239 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑦𝐴 → ∃𝑥 ∈ ℕ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
5857ralrimiv 3141 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ∀𝑦𝐴𝑥 ∈ ℕ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥))))
59 ovolficc 25391 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ (𝑓f I 𝑓):ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ([,] ∘ (𝑓f I 𝑓)) ↔ ∀𝑦𝐴𝑥 ∈ ℕ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
6025, 59syldan 590 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝐴 ran ([,] ∘ (𝑓f I 𝑓)) ↔ ∀𝑦𝐴𝑥 ∈ ℕ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
6158, 60mpbird 257 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝐴 ran ([,] ∘ (𝑓f I 𝑓)))
62 eqid 2728 . . . . . . . . 9 seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))) = seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓)))
6362ovollb2 25412 . . . . . . . 8 (((𝑓f I 𝑓):ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ (𝑓f I 𝑓))) → (vol*‘𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))), ℝ*, < ))
6425, 61, 63syl2anc 583 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (vol*‘𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))), ℝ*, < ))
6521, 21opelxpd 5712 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ (ℂ × ℂ))
66 absf 15311 . . . . . . . . . . . . . . . . . . 19 abs:ℂ⟶ℝ
67 subf 11487 . . . . . . . . . . . . . . . . . . 19 − :(ℂ × ℂ)⟶ℂ
68 fco 6742 . . . . . . . . . . . . . . . . . . 19 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
6966, 67, 68mp2an 691 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
7069a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
7170feqmptd 6962 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (abs ∘ − ) = (𝑦 ∈ (ℂ × ℂ) ↦ ((abs ∘ − )‘𝑦)))
72 fveq2 6892 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨(𝑓𝑥), (𝑓𝑥)⟩ → ((abs ∘ − )‘𝑦) = ((abs ∘ − )‘⟨(𝑓𝑥), (𝑓𝑥)⟩))
73 df-ov 7418 . . . . . . . . . . . . . . . . 17 ((𝑓𝑥)(abs ∘ − )(𝑓𝑥)) = ((abs ∘ − )‘⟨(𝑓𝑥), (𝑓𝑥)⟩)
7472, 73eqtr4di 2786 . . . . . . . . . . . . . . . 16 (𝑦 = ⟨(𝑓𝑥), (𝑓𝑥)⟩ → ((abs ∘ − )‘𝑦) = ((𝑓𝑥)(abs ∘ − )(𝑓𝑥)))
7565, 36, 71, 74fmptco 7133 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((abs ∘ − ) ∘ (𝑓f I 𝑓)) = (𝑥 ∈ ℕ ↦ ((𝑓𝑥)(abs ∘ − )(𝑓𝑥))))
76 cnmet 24682 . . . . . . . . . . . . . . . . 17 (abs ∘ − ) ∈ (Met‘ℂ)
77 met0 24243 . . . . . . . . . . . . . . . . 17 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ (𝑓𝑥) ∈ ℂ) → ((𝑓𝑥)(abs ∘ − )(𝑓𝑥)) = 0)
7876, 21, 77sylancr 586 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ((𝑓𝑥)(abs ∘ − )(𝑓𝑥)) = 0)
7978mpteq2dva 5243 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑥 ∈ ℕ ↦ ((𝑓𝑥)(abs ∘ − )(𝑓𝑥))) = (𝑥 ∈ ℕ ↦ 0))
8075, 79eqtrd 2768 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((abs ∘ − ) ∘ (𝑓f I 𝑓)) = (𝑥 ∈ ℕ ↦ 0))
81 fconstmpt 5735 . . . . . . . . . . . . . 14 (ℕ × {0}) = (𝑥 ∈ ℕ ↦ 0)
8280, 81eqtr4di 2786 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((abs ∘ − ) ∘ (𝑓f I 𝑓)) = (ℕ × {0}))
8382seqeq3d 14001 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))) = seq1( + , (ℕ × {0})))
84 1z 12617 . . . . . . . . . . . . 13 1 ∈ ℤ
85 nnuz 12890 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
8685ser0f 14047 . . . . . . . . . . . . 13 (1 ∈ ℤ → seq1( + , (ℕ × {0})) = (ℕ × {0}))
8784, 86ax-mp 5 . . . . . . . . . . . 12 seq1( + , (ℕ × {0})) = (ℕ × {0})
8883, 87eqtrdi 2784 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))) = (ℕ × {0}))
8988rneqd 5935 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))) = ran (ℕ × {0}))
90 1nn 12248 . . . . . . . . . . 11 1 ∈ ℕ
91 ne0i 4331 . . . . . . . . . . 11 (1 ∈ ℕ → ℕ ≠ ∅)
92 rnxp 6169 . . . . . . . . . . 11 (ℕ ≠ ∅ → ran (ℕ × {0}) = {0})
9390, 91, 92mp2b 10 . . . . . . . . . 10 ran (ℕ × {0}) = {0}
9489, 93eqtrdi 2784 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))) = {0})
9594supeq1d 9464 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))), ℝ*, < ) = sup({0}, ℝ*, < ))
96 xrltso 13147 . . . . . . . . 9 < Or ℝ*
97 0xr 11286 . . . . . . . . 9 0 ∈ ℝ*
98 supsn 9490 . . . . . . . . 9 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
9996, 97, 98mp2an 691 . . . . . . . 8 sup({0}, ℝ*, < ) = 0
10095, 99eqtrdi 2784 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))), ℝ*, < ) = 0)
10164, 100breqtrd 5169 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (vol*‘𝐴) ≤ 0)
102 ovolge0 25404 . . . . . . 7 (𝐴 ⊆ ℝ → 0 ≤ (vol*‘𝐴))
103102adantr 480 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 0 ≤ (vol*‘𝐴))
104 ovolcl 25401 . . . . . . . 8 (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*)
105104adantr 480 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (vol*‘𝐴) ∈ ℝ*)
106 xrletri3 13160 . . . . . . 7 (((vol*‘𝐴) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol*‘𝐴) = 0 ↔ ((vol*‘𝐴) ≤ 0 ∧ 0 ≤ (vol*‘𝐴))))
107105, 97, 106sylancl 585 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((vol*‘𝐴) = 0 ↔ ((vol*‘𝐴) ≤ 0 ∧ 0 ≤ (vol*‘𝐴))))
108101, 103, 107mpbir2and 712 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (vol*‘𝐴) = 0)
109108ex 412 . . . 4 (𝐴 ⊆ ℝ → (𝑓:ℕ–1-1-onto𝐴 → (vol*‘𝐴) = 0))
110109exlimdv 1929 . . 3 (𝐴 ⊆ ℝ → (∃𝑓 𝑓:ℕ–1-1-onto𝐴 → (vol*‘𝐴) = 0))
1111, 110biimtrid 241 . 2 (𝐴 ⊆ ℝ → (ℕ ≈ 𝐴 → (vol*‘𝐴) = 0))
112 ensym 9018 . 2 (𝐴 ≈ ℕ → ℕ ≈ 𝐴)
113111, 112impel 505 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≈ ℕ) → (vol*‘𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wex 1774  wcel 2099  wne 2936  wral 3057  wrex 3066  Vcvv 3470  cin 3944  wss 3945  c0 4319  {csn 4625  cop 4631   cuni 4904   class class class wbr 5143  cmpt 5226   I cid 5570   Or wor 5584   × cxp 5671  ran crn 5674  ccom 5677   Fn wfn 6538  wf 6539  ontowfo 6541  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7415  f cof 7678  1st c1st 7986  2nd c2nd 7987  cen 8955  supcsup 9458  cc 11131  cr 11132  0cc0 11133  1c1 11134   + caddc 11136  *cxr 11272   < clt 11273  cle 11274  cmin 11469  cn 12237  cz 12583  [,]cicc 13354  seqcseq 13993  abscabs 15208  Metcmet 21259  vol*covol 25385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7680  df-om 7866  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-er 8719  df-map 8841  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-sup 9460  df-inf 9461  df-oi 9528  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-n0 12498  df-z 12584  df-uz 12848  df-q 12958  df-rp 13002  df-xadd 13120  df-ioo 13355  df-ico 13357  df-icc 13358  df-fz 13512  df-fzo 13655  df-seq 13994  df-exp 14054  df-hash 14317  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-clim 15459  df-sum 15660  df-xmet 21266  df-met 21267  df-ovol 25387
This theorem is referenced by:  ovolq  25414  ovolctb2  25415  ovoliunnfl  37130
  Copyright terms: Public domain W3C validator
OSZAR »