MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1ldgn Structured version   Visualization version   GIF version

Theorem deg1ldgn 26022
Description: An index at which a polynomial is zero, cannot be its degree. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
deg1z.d 𝐷 = ( deg1𝑅)
deg1z.p 𝑃 = (Poly1𝑅)
deg1z.z 0 = (0g𝑃)
deg1nn0cl.b 𝐵 = (Base‘𝑃)
deg1ldg.y 𝑌 = (0g𝑅)
deg1ldg.a 𝐴 = (coe1𝐹)
deg1ldgn.r (𝜑𝑅 ∈ Ring)
deg1ldgn.f (𝜑𝐹𝐵)
deg1ldgn.x (𝜑𝑋 ∈ ℕ0)
deg1ldgn.e (𝜑 → (𝐴𝑋) = 𝑌)
Assertion
Ref Expression
deg1ldgn (𝜑 → (𝐷𝐹) ≠ 𝑋)

Proof of Theorem deg1ldgn
StepHypRef Expression
1 deg1ldgn.e . 2 (𝜑 → (𝐴𝑋) = 𝑌)
2 fveq2 6891 . . . . . 6 ((𝐷𝐹) = 𝑋 → (𝐴‘(𝐷𝐹)) = (𝐴𝑋))
32adantl 481 . . . . 5 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → (𝐴‘(𝐷𝐹)) = (𝐴𝑋))
4 deg1ldgn.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
54adantr 480 . . . . . 6 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → 𝑅 ∈ Ring)
6 deg1ldgn.f . . . . . . 7 (𝜑𝐹𝐵)
76adantr 480 . . . . . 6 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → 𝐹𝐵)
8 deg1ldgn.x . . . . . . . . 9 (𝜑𝑋 ∈ ℕ0)
9 eleq1a 2824 . . . . . . . . 9 (𝑋 ∈ ℕ0 → ((𝐷𝐹) = 𝑋 → (𝐷𝐹) ∈ ℕ0))
108, 9syl 17 . . . . . . . 8 (𝜑 → ((𝐷𝐹) = 𝑋 → (𝐷𝐹) ∈ ℕ0))
1110imp 406 . . . . . . 7 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → (𝐷𝐹) ∈ ℕ0)
12 deg1z.d . . . . . . . . . 10 𝐷 = ( deg1𝑅)
13 deg1z.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
14 deg1z.z . . . . . . . . . 10 0 = (0g𝑃)
15 deg1nn0cl.b . . . . . . . . . 10 𝐵 = (Base‘𝑃)
1612, 13, 14, 15deg1nn0clb 26019 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
174, 6, 16syl2anc 583 . . . . . . . 8 (𝜑 → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
1817adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
1911, 18mpbird 257 . . . . . 6 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → 𝐹0 )
20 deg1ldg.y . . . . . . 7 𝑌 = (0g𝑅)
21 deg1ldg.a . . . . . . 7 𝐴 = (coe1𝐹)
2212, 13, 14, 15, 20, 21deg1ldg 26021 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐴‘(𝐷𝐹)) ≠ 𝑌)
235, 7, 19, 22syl3anc 1369 . . . . 5 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → (𝐴‘(𝐷𝐹)) ≠ 𝑌)
243, 23eqnetrrd 3005 . . . 4 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → (𝐴𝑋) ≠ 𝑌)
2524ex 412 . . 3 (𝜑 → ((𝐷𝐹) = 𝑋 → (𝐴𝑋) ≠ 𝑌))
2625necon2d 2959 . 2 (𝜑 → ((𝐴𝑋) = 𝑌 → (𝐷𝐹) ≠ 𝑋))
271, 26mpd 15 1 (𝜑 → (𝐷𝐹) ≠ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wne 2936  cfv 6542  0cn0 12496  Basecbs 17173  0gc0g 17414  Ringcrg 20166  Poly1cpl1 22089  coe1cco1 22090   deg1 cdg1 25980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-addf 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-sup 9459  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-fz 13511  df-fzo 13654  df-seq 13993  df-hash 14316  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-0g 17416  df-gsum 17417  df-prds 17422  df-pws 17424  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-grp 18886  df-minusg 18887  df-mulg 19017  df-subg 19071  df-cntz 19261  df-cmn 19730  df-abl 19731  df-mgp 20068  df-ur 20115  df-ring 20168  df-cring 20169  df-cnfld 21273  df-psr 21835  df-mpl 21837  df-opsr 21839  df-psr1 22092  df-ply1 22094  df-coe1 22095  df-mdeg 25981  df-deg1 25982
This theorem is referenced by:  deg1sublt  26039
  Copyright terms: Public domain W3C validator
OSZAR »