![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihpN | Structured version Visualization version GIF version |
Description: The value of isomorphism H at the fiducial atom 𝑃 is determined by the vector 〈0, 𝑆〉 (the zero translation ltrnid 39612 and a nonzero member of the endomorphism ring). In particular, 𝑆 can be replaced with the ring unity ( I ↾ 𝑇). (Contributed by NM, 26-Aug-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dihp.b | ⊢ 𝐵 = (Base‘𝐾) |
dihp.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihp.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
dihp.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dihp.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dihp.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
dihp.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihp.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihp.n | ⊢ 𝑁 = (LSpan‘𝑈) |
dihp.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dihp.s | ⊢ (𝜑 → (𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂)) |
Ref | Expression |
---|---|
dihpN | ⊢ (𝜑 → (𝐼‘𝑃) = (𝑁‘{〈( I ↾ 𝐵), 𝑆〉})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . 2 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
2 | dihp.n | . 2 ⊢ 𝑁 = (LSpan‘𝑈) | |
3 | eqid 2727 | . 2 ⊢ (LSAtoms‘𝑈) = (LSAtoms‘𝑈) | |
4 | dihp.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | dihp.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | dihp.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | 4, 5, 6 | dvhlvec 40586 | . 2 ⊢ (𝜑 → 𝑈 ∈ LVec) |
8 | dihp.p | . . 3 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
9 | dihp.i | . . 3 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
10 | 4, 8, 9, 5, 3, 6 | dihat 40812 | . 2 ⊢ (𝜑 → (𝐼‘𝑃) ∈ (LSAtoms‘𝑈)) |
11 | eqid 2727 | . . . . . . . 8 ⊢ (le‘𝐾) = (le‘𝐾) | |
12 | eqid 2727 | . . . . . . . 8 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
13 | 11, 12, 4, 8 | lhpocnel2 39496 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ (Atoms‘𝐾) ∧ ¬ 𝑃(le‘𝐾)𝑊)) |
14 | dihp.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐾) | |
15 | dihp.t | . . . . . . . 8 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
16 | eqid 2727 | . . . . . . . 8 ⊢ (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃) = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃) | |
17 | 14, 11, 12, 4, 15, 16 | ltrniotaidvalN 40060 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ (Atoms‘𝐾) ∧ ¬ 𝑃(le‘𝐾)𝑊)) → (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃) = ( I ↾ 𝐵)) |
18 | 6, 13, 17 | syl2anc2 583 | . . . . . 6 ⊢ (𝜑 → (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃) = ( I ↾ 𝐵)) |
19 | 18 | fveq2d 6904 | . . . . 5 ⊢ (𝜑 → (𝑆‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) = (𝑆‘( I ↾ 𝐵))) |
20 | dihp.s | . . . . . . 7 ⊢ (𝜑 → (𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂)) | |
21 | 20 | simpld 493 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝐸) |
22 | dihp.e | . . . . . . 7 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
23 | 14, 4, 22 | tendoid 40250 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
24 | 6, 21, 23 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → (𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
25 | 19, 24 | eqtr2d 2768 | . . . 4 ⊢ (𝜑 → ( I ↾ 𝐵) = (𝑆‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃))) |
26 | 14 | fvexi 6914 | . . . . . 6 ⊢ 𝐵 ∈ V |
27 | resiexg 7924 | . . . . . 6 ⊢ (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V) | |
28 | 26, 27 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ( I ↾ 𝐵) ∈ V) |
29 | eqeq1 2731 | . . . . . . 7 ⊢ (𝑔 = ( I ↾ 𝐵) → (𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ↔ ( I ↾ 𝐵) = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)))) | |
30 | 29 | anbi1d 629 | . . . . . 6 ⊢ (𝑔 = ( I ↾ 𝐵) → ((𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸) ↔ (( I ↾ 𝐵) = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸))) |
31 | fveq1 6899 | . . . . . . . 8 ⊢ (𝑠 = 𝑆 → (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) = (𝑆‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃))) | |
32 | 31 | eqeq2d 2738 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (( I ↾ 𝐵) = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ↔ ( I ↾ 𝐵) = (𝑆‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)))) |
33 | eleq1 2816 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑠 ∈ 𝐸 ↔ 𝑆 ∈ 𝐸)) | |
34 | 32, 33 | anbi12d 630 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ((( I ↾ 𝐵) = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸) ↔ (( I ↾ 𝐵) = (𝑆‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑆 ∈ 𝐸))) |
35 | 30, 34 | opelopabg 5542 | . . . . 5 ⊢ ((( I ↾ 𝐵) ∈ V ∧ 𝑆 ∈ 𝐸) → (〈( I ↾ 𝐵), 𝑆〉 ∈ {〈𝑔, 𝑠〉 ∣ (𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸)} ↔ (( I ↾ 𝐵) = (𝑆‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑆 ∈ 𝐸))) |
36 | 28, 21, 35 | syl2anc 582 | . . . 4 ⊢ (𝜑 → (〈( I ↾ 𝐵), 𝑆〉 ∈ {〈𝑔, 𝑠〉 ∣ (𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸)} ↔ (( I ↾ 𝐵) = (𝑆‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑆 ∈ 𝐸))) |
37 | 25, 21, 36 | mpbir2and 711 | . . 3 ⊢ (𝜑 → 〈( I ↾ 𝐵), 𝑆〉 ∈ {〈𝑔, 𝑠〉 ∣ (𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸)}) |
38 | eqid 2727 | . . . . . 6 ⊢ ((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊) | |
39 | 11, 12, 4, 38, 9 | dihvalcqat 40716 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ (Atoms‘𝐾) ∧ ¬ 𝑃(le‘𝐾)𝑊)) → (𝐼‘𝑃) = (((DIsoC‘𝐾)‘𝑊)‘𝑃)) |
40 | 6, 13, 39 | syl2anc2 583 | . . . 4 ⊢ (𝜑 → (𝐼‘𝑃) = (((DIsoC‘𝐾)‘𝑊)‘𝑃)) |
41 | 11, 12, 4, 8, 15, 22, 38 | dicval 40653 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ (Atoms‘𝐾) ∧ ¬ 𝑃(le‘𝐾)𝑊)) → (((DIsoC‘𝐾)‘𝑊)‘𝑃) = {〈𝑔, 𝑠〉 ∣ (𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸)}) |
42 | 6, 13, 41 | syl2anc2 583 | . . . 4 ⊢ (𝜑 → (((DIsoC‘𝐾)‘𝑊)‘𝑃) = {〈𝑔, 𝑠〉 ∣ (𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸)}) |
43 | 40, 42 | eqtr2d 2768 | . . 3 ⊢ (𝜑 → {〈𝑔, 𝑠〉 ∣ (𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸)} = (𝐼‘𝑃)) |
44 | 37, 43 | eleqtrd 2830 | . 2 ⊢ (𝜑 → 〈( I ↾ 𝐵), 𝑆〉 ∈ (𝐼‘𝑃)) |
45 | 20 | simprd 494 | . . 3 ⊢ (𝜑 → 𝑆 ≠ 𝑂) |
46 | dihp.o | . . . . . . . 8 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
47 | 14, 4, 15, 5, 1, 46 | dvh0g 40588 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (0g‘𝑈) = 〈( I ↾ 𝐵), 𝑂〉) |
48 | 6, 47 | syl 17 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑈) = 〈( I ↾ 𝐵), 𝑂〉) |
49 | 48 | eqeq2d 2738 | . . . . 5 ⊢ (𝜑 → (〈( I ↾ 𝐵), 𝑆〉 = (0g‘𝑈) ↔ 〈( I ↾ 𝐵), 𝑆〉 = 〈( I ↾ 𝐵), 𝑂〉)) |
50 | 26, 27 | ax-mp 5 | . . . . . . 7 ⊢ ( I ↾ 𝐵) ∈ V |
51 | 15 | fvexi 6914 | . . . . . . . . 9 ⊢ 𝑇 ∈ V |
52 | 51 | mptex 7239 | . . . . . . . 8 ⊢ (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ∈ V |
53 | 46, 52 | eqeltri 2824 | . . . . . . 7 ⊢ 𝑂 ∈ V |
54 | 50, 53 | opth2 5484 | . . . . . 6 ⊢ (〈( I ↾ 𝐵), 𝑆〉 = 〈( I ↾ 𝐵), 𝑂〉 ↔ (( I ↾ 𝐵) = ( I ↾ 𝐵) ∧ 𝑆 = 𝑂)) |
55 | 54 | simprbi 495 | . . . . 5 ⊢ (〈( I ↾ 𝐵), 𝑆〉 = 〈( I ↾ 𝐵), 𝑂〉 → 𝑆 = 𝑂) |
56 | 49, 55 | biimtrdi 252 | . . . 4 ⊢ (𝜑 → (〈( I ↾ 𝐵), 𝑆〉 = (0g‘𝑈) → 𝑆 = 𝑂)) |
57 | 56 | necon3d 2957 | . . 3 ⊢ (𝜑 → (𝑆 ≠ 𝑂 → 〈( I ↾ 𝐵), 𝑆〉 ≠ (0g‘𝑈))) |
58 | 45, 57 | mpd 15 | . 2 ⊢ (𝜑 → 〈( I ↾ 𝐵), 𝑆〉 ≠ (0g‘𝑈)) |
59 | 1, 2, 3, 7, 10, 44, 58 | lsatel 38481 | 1 ⊢ (𝜑 → (𝐼‘𝑃) = (𝑁‘{〈( I ↾ 𝐵), 𝑆〉})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2936 Vcvv 3471 {csn 4630 〈cop 4636 class class class wbr 5150 {copab 5212 ↦ cmpt 5233 I cid 5577 ↾ cres 5682 ‘cfv 6551 ℩crio 7379 Basecbs 17185 lecple 17245 occoc 17246 0gc0g 17426 LSpanclspn 20860 LSAtomsclsa 38450 Atomscatm 38739 HLchlt 38826 LHypclh 39461 LTrncltrn 39578 TEndoctendo 40229 DVecHcdvh 40555 DIsoCcdic 40649 DIsoHcdih 40705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-riotaBAD 38429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-iin 5001 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-tpos 8236 df-undef 8283 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-er 8729 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-n0 12509 df-z 12595 df-uz 12859 df-fz 13523 df-struct 17121 df-sets 17138 df-slot 17156 df-ndx 17168 df-base 17186 df-ress 17215 df-plusg 17251 df-mulr 17252 df-sca 17254 df-vsca 17255 df-0g 17428 df-proset 18292 df-poset 18310 df-plt 18327 df-lub 18343 df-glb 18344 df-join 18345 df-meet 18346 df-p0 18422 df-p1 18423 df-lat 18429 df-clat 18496 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-submnd 18746 df-grp 18898 df-minusg 18899 df-sbg 18900 df-subg 19083 df-cntz 19273 df-lsm 19596 df-cmn 19742 df-abl 19743 df-mgp 20080 df-rng 20098 df-ur 20127 df-ring 20180 df-oppr 20278 df-dvdsr 20301 df-unit 20302 df-invr 20332 df-dvr 20345 df-drng 20631 df-lmod 20750 df-lss 20821 df-lsp 20861 df-lvec 20993 df-lsatoms 38452 df-oposet 38652 df-ol 38654 df-oml 38655 df-covers 38742 df-ats 38743 df-atl 38774 df-cvlat 38798 df-hlat 38827 df-llines 38975 df-lplanes 38976 df-lvols 38977 df-lines 38978 df-psubsp 38980 df-pmap 38981 df-padd 39273 df-lhyp 39465 df-laut 39466 df-ldil 39581 df-ltrn 39582 df-trl 39636 df-tendo 40232 df-edring 40234 df-disoa 40506 df-dvech 40556 df-dib 40616 df-dic 40650 df-dih 40706 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |