![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divcan5rd | Structured version Visualization version GIF version |
Description: Cancellation of common factor in a ratio. (Contributed by Mario Carneiro, 1-Jan-2017.) |
Ref | Expression |
---|---|
div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
divmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
divmuld.4 | ⊢ (𝜑 → 𝐵 ≠ 0) |
divdiv23d.5 | ⊢ (𝜑 → 𝐶 ≠ 0) |
Ref | Expression |
---|---|
divcan5rd | ⊢ (𝜑 → ((𝐴 · 𝐶) / (𝐵 · 𝐶)) = (𝐴 / 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | divmuld.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
3 | 1, 2 | mulcomd 11259 | . . 3 ⊢ (𝜑 → (𝐴 · 𝐶) = (𝐶 · 𝐴)) |
4 | divcld.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
5 | 4, 2 | mulcomd 11259 | . . 3 ⊢ (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐵)) |
6 | 3, 5 | oveq12d 7432 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐶) / (𝐵 · 𝐶)) = ((𝐶 · 𝐴) / (𝐶 · 𝐵))) |
7 | divmuld.4 | . . 3 ⊢ (𝜑 → 𝐵 ≠ 0) | |
8 | divdiv23d.5 | . . 3 ⊢ (𝜑 → 𝐶 ≠ 0) | |
9 | 1, 4, 2, 7, 8 | divcan5d 12040 | . 2 ⊢ (𝜑 → ((𝐶 · 𝐴) / (𝐶 · 𝐵)) = (𝐴 / 𝐵)) |
10 | 6, 9 | eqtrd 2768 | 1 ⊢ (𝜑 → ((𝐴 · 𝐶) / (𝐵 · 𝐶)) = (𝐴 / 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 (class class class)co 7414 ℂcc 11130 0cc0 11132 · cmul 11137 / cdiv 11895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 |
This theorem is referenced by: dvmptdiv 25899 dvtaylp 26298 chordthmlem2 26758 itg2addnclem 37138 stirlinglem1 45456 dirkertrigeqlem2 45481 dirkercncflem2 45486 sigardiv 46243 |
Copyright terms: Public domain | W3C validator |