![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chordthmlem2 | Structured version Visualization version GIF version |
Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then QMP is a right angle. This is proven by reduction to the special case chordthmlem 26757, where P = B, and using angrtmuld 26733 to observe that QMP is right iff QMB is. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
chordthmlem2.angdef | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
chordthmlem2.A | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
chordthmlem2.B | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
chordthmlem2.Q | ⊢ (𝜑 → 𝑄 ∈ ℂ) |
chordthmlem2.X | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
chordthmlem2.M | ⊢ (𝜑 → 𝑀 = ((𝐴 + 𝐵) / 2)) |
chordthmlem2.P | ⊢ (𝜑 → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵))) |
chordthmlem2.ABequidistQ | ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) |
chordthmlem2.PneM | ⊢ (𝜑 → 𝑃 ≠ 𝑀) |
chordthmlem2.QneM | ⊢ (𝜑 → 𝑄 ≠ 𝑀) |
Ref | Expression |
---|---|
chordthmlem2 | ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝑃 − 𝑀)) ∈ {(π / 2), -(π / 2)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chordthmlem2.angdef | . . 3 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) | |
2 | chordthmlem2.A | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | chordthmlem2.B | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | chordthmlem2.Q | . . 3 ⊢ (𝜑 → 𝑄 ∈ ℂ) | |
5 | chordthmlem2.M | . . 3 ⊢ (𝜑 → 𝑀 = ((𝐴 + 𝐵) / 2)) | |
6 | chordthmlem2.ABequidistQ | . . 3 ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) | |
7 | 2re 12310 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
8 | 7 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 2 ∈ ℝ) |
9 | 2ne0 12340 | . . . . . . . . . 10 ⊢ 2 ≠ 0 | |
10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 2 ≠ 0) |
11 | 8, 10 | rereccld 12065 | . . . . . . . 8 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
12 | chordthmlem2.X | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
13 | 11, 12 | resubcld 11666 | . . . . . . 7 ⊢ (𝜑 → ((1 / 2) − 𝑋) ∈ ℝ) |
14 | 13 | recnd 11266 | . . . . . 6 ⊢ (𝜑 → ((1 / 2) − 𝑋) ∈ ℂ) |
15 | 3, 2 | subcld 11595 | . . . . . 6 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℂ) |
16 | 11 | recnd 11266 | . . . . . . . . 9 ⊢ (𝜑 → (1 / 2) ∈ ℂ) |
17 | 12 | recnd 11266 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
18 | 16, 17, 15 | subdird 11695 | . . . . . . . 8 ⊢ (𝜑 → (((1 / 2) − 𝑋) · (𝐵 − 𝐴)) = (((1 / 2) · (𝐵 − 𝐴)) − (𝑋 · (𝐵 − 𝐴)))) |
19 | 2cnd 12314 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 2 ∈ ℂ) | |
20 | 3, 19, 10 | divcan4d 12020 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((𝐵 · 2) / 2) = 𝐵) |
21 | 3 | times2d 12480 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (𝐵 · 2) = (𝐵 + 𝐵)) |
22 | 21 | oveq1d 7429 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((𝐵 · 2) / 2) = ((𝐵 + 𝐵) / 2)) |
23 | 20, 22 | eqtr3d 2770 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐵 = ((𝐵 + 𝐵) / 2)) |
24 | 23, 5 | oveq12d 7432 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐵 − 𝑀) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2))) |
25 | 3, 3 | addcld 11257 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐵 + 𝐵) ∈ ℂ) |
26 | 2, 3 | addcld 11257 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
27 | 25, 26, 19, 10 | divsubdird 12053 | . . . . . . . . . . 11 ⊢ (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2))) |
28 | 3, 2, 3 | pnpcan2d 11633 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((𝐵 + 𝐵) − (𝐴 + 𝐵)) = (𝐵 − 𝐴)) |
29 | 28 | oveq1d 7429 | . . . . . . . . . . 11 ⊢ (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = ((𝐵 − 𝐴) / 2)) |
30 | 24, 27, 29 | 3eqtr2d 2774 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐵 − 𝑀) = ((𝐵 − 𝐴) / 2)) |
31 | 15, 19, 10 | divrec2d 12018 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐵 − 𝐴) / 2) = ((1 / 2) · (𝐵 − 𝐴))) |
32 | 30, 31 | eqtrd 2768 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵 − 𝑀) = ((1 / 2) · (𝐵 − 𝐴))) |
33 | chordthmlem2.P | . . . . . . . . . 10 ⊢ (𝜑 → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵))) | |
34 | 17, 2 | mulcld 11258 | . . . . . . . . . . . . 13 ⊢ (𝜑 → (𝑋 · 𝐴) ∈ ℂ) |
35 | 1cnd 11233 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 1 ∈ ℂ) | |
36 | 35, 17 | subcld 11595 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (1 − 𝑋) ∈ ℂ) |
37 | 36, 3 | mulcld 11258 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ) |
38 | 34, 37 | addcld 11257 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ) |
39 | 33, 38 | eqeltrd 2829 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
40 | 2, 39, 3, 17 | affineequiv 26748 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ↔ (𝐵 − 𝑃) = (𝑋 · (𝐵 − 𝐴)))) |
41 | 33, 40 | mpbid 231 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵 − 𝑃) = (𝑋 · (𝐵 − 𝐴))) |
42 | 32, 41 | oveq12d 7432 | . . . . . . . 8 ⊢ (𝜑 → ((𝐵 − 𝑀) − (𝐵 − 𝑃)) = (((1 / 2) · (𝐵 − 𝐴)) − (𝑋 · (𝐵 − 𝐴)))) |
43 | 26 | halfcld 12481 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ) |
44 | 5, 43 | eqeltrd 2829 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
45 | 3, 44, 39 | nnncan1d 11629 | . . . . . . . 8 ⊢ (𝜑 → ((𝐵 − 𝑀) − (𝐵 − 𝑃)) = (𝑃 − 𝑀)) |
46 | 18, 42, 45 | 3eqtr2rd 2775 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − 𝑀) = (((1 / 2) − 𝑋) · (𝐵 − 𝐴))) |
47 | chordthmlem2.PneM | . . . . . . . 8 ⊢ (𝜑 → 𝑃 ≠ 𝑀) | |
48 | 39, 44, 47 | subne0d 11604 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − 𝑀) ≠ 0) |
49 | 46, 48 | eqnetrrd 3005 | . . . . . 6 ⊢ (𝜑 → (((1 / 2) − 𝑋) · (𝐵 − 𝐴)) ≠ 0) |
50 | 14, 15, 49 | mulne0bbd 11894 | . . . . 5 ⊢ (𝜑 → (𝐵 − 𝐴) ≠ 0) |
51 | 3, 2, 50 | subne0ad 11606 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
52 | 51 | necomd 2992 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
53 | chordthmlem2.QneM | . . 3 ⊢ (𝜑 → 𝑄 ≠ 𝑀) | |
54 | 1, 2, 3, 4, 5, 6, 52, 53 | chordthmlem 26757 | . 2 ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ {(π / 2), -(π / 2)}) |
55 | 4, 44 | subcld 11595 | . . 3 ⊢ (𝜑 → (𝑄 − 𝑀) ∈ ℂ) |
56 | 39, 44 | subcld 11595 | . . 3 ⊢ (𝜑 → (𝑃 − 𝑀) ∈ ℂ) |
57 | 3, 44 | subcld 11595 | . . 3 ⊢ (𝜑 → (𝐵 − 𝑀) ∈ ℂ) |
58 | 4, 44, 53 | subne0d 11604 | . . 3 ⊢ (𝜑 → (𝑄 − 𝑀) ≠ 0) |
59 | 19, 10 | recne0d 12008 | . . . . 5 ⊢ (𝜑 → (1 / 2) ≠ 0) |
60 | 16, 15, 59, 50 | mulne0d 11890 | . . . 4 ⊢ (𝜑 → ((1 / 2) · (𝐵 − 𝐴)) ≠ 0) |
61 | 32, 60 | eqnetrd 3004 | . . 3 ⊢ (𝜑 → (𝐵 − 𝑀) ≠ 0) |
62 | 32, 46 | oveq12d 7432 | . . . . 5 ⊢ (𝜑 → ((𝐵 − 𝑀) / (𝑃 − 𝑀)) = (((1 / 2) · (𝐵 − 𝐴)) / (((1 / 2) − 𝑋) · (𝐵 − 𝐴)))) |
63 | 14, 15, 49 | mulne0bad 11893 | . . . . . 6 ⊢ (𝜑 → ((1 / 2) − 𝑋) ≠ 0) |
64 | 16, 14, 15, 63, 50 | divcan5rd 12041 | . . . . 5 ⊢ (𝜑 → (((1 / 2) · (𝐵 − 𝐴)) / (((1 / 2) − 𝑋) · (𝐵 − 𝐴))) = ((1 / 2) / ((1 / 2) − 𝑋))) |
65 | 62, 64 | eqtrd 2768 | . . . 4 ⊢ (𝜑 → ((𝐵 − 𝑀) / (𝑃 − 𝑀)) = ((1 / 2) / ((1 / 2) − 𝑋))) |
66 | 11, 13, 63 | redivcld 12066 | . . . 4 ⊢ (𝜑 → ((1 / 2) / ((1 / 2) − 𝑋)) ∈ ℝ) |
67 | 65, 66 | eqeltrd 2829 | . . 3 ⊢ (𝜑 → ((𝐵 − 𝑀) / (𝑃 − 𝑀)) ∈ ℝ) |
68 | 1, 55, 56, 57, 58, 48, 61, 67 | angrtmuld 26733 | . 2 ⊢ (𝜑 → (((𝑄 − 𝑀)𝐹(𝑃 − 𝑀)) ∈ {(π / 2), -(π / 2)} ↔ ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ {(π / 2), -(π / 2)})) |
69 | 54, 68 | mpbird 257 | 1 ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝑃 − 𝑀)) ∈ {(π / 2), -(π / 2)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ∖ cdif 3942 {csn 4624 {cpr 4626 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 ℂcc 11130 ℝcr 11131 0cc0 11132 1c1 11133 + caddc 11135 · cmul 11137 − cmin 11468 -cneg 11469 / cdiv 11895 2c2 12291 ℑcim 15071 abscabs 15207 πcpi 16036 logclog 26481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 ax-addf 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-q 12957 df-rp 13001 df-xneg 13118 df-xadd 13119 df-xmul 13120 df-ioo 13354 df-ioc 13355 df-ico 13356 df-icc 13357 df-fz 13511 df-fzo 13654 df-fl 13783 df-mod 13861 df-seq 13993 df-exp 14053 df-fac 14259 df-bc 14288 df-hash 14316 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15441 df-clim 15458 df-rlim 15459 df-sum 15659 df-ef 16037 df-sin 16039 df-cos 16040 df-pi 16042 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17397 df-topn 17398 df-0g 17416 df-gsum 17417 df-topgen 17418 df-pt 17419 df-prds 17422 df-xrs 17477 df-qtop 17482 df-imas 17483 df-xps 17485 df-mre 17559 df-mrc 17560 df-acs 17562 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-submnd 18734 df-mulg 19017 df-cntz 19261 df-cmn 19730 df-psmet 21264 df-xmet 21265 df-met 21266 df-bl 21267 df-mopn 21268 df-fbas 21269 df-fg 21270 df-cnfld 21273 df-top 22789 df-topon 22806 df-topsp 22828 df-bases 22842 df-cld 22916 df-ntr 22917 df-cls 22918 df-nei 22995 df-lp 23033 df-perf 23034 df-cn 23124 df-cnp 23125 df-haus 23212 df-tx 23459 df-hmeo 23652 df-fil 23743 df-fm 23835 df-flim 23836 df-flf 23837 df-xms 24219 df-ms 24220 df-tms 24221 df-cncf 24791 df-limc 25788 df-dv 25789 df-log 26483 |
This theorem is referenced by: chordthmlem3 26759 |
Copyright terms: Public domain | W3C validator |