![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvferm | Structured version Visualization version GIF version |
Description: Fermat's theorem on stationary points. A point 𝑈 which is a local maximum has derivative equal to zero. (Contributed by Mario Carneiro, 1-Sep-2014.) |
Ref | Expression |
---|---|
dvferm.a | ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
dvferm.b | ⊢ (𝜑 → 𝑋 ⊆ ℝ) |
dvferm.u | ⊢ (𝜑 → 𝑈 ∈ (𝐴(,)𝐵)) |
dvferm.s | ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋) |
dvferm.d | ⊢ (𝜑 → 𝑈 ∈ dom (ℝ D 𝐹)) |
dvferm.r | ⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) |
Ref | Expression |
---|---|
dvferm | ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvferm.a | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) | |
2 | dvferm.b | . . 3 ⊢ (𝜑 → 𝑋 ⊆ ℝ) | |
3 | dvferm.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ (𝐴(,)𝐵)) | |
4 | dvferm.s | . . 3 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋) | |
5 | dvferm.d | . . 3 ⊢ (𝜑 → 𝑈 ∈ dom (ℝ D 𝐹)) | |
6 | ne0i 4335 | . . . . . . 7 ⊢ (𝑈 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅) | |
7 | ndmioo 13384 | . . . . . . . 8 ⊢ (¬ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅) | |
8 | 7 | necon1ai 2965 | . . . . . . 7 ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
9 | 3, 6, 8 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
10 | 9 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
11 | ioossre 13418 | . . . . . . . 8 ⊢ (𝐴(,)𝐵) ⊆ ℝ | |
12 | 11, 3 | sselid 3978 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ ℝ) |
13 | 12 | rexrd 11295 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ ℝ*) |
14 | eliooord 13416 | . . . . . . . 8 ⊢ (𝑈 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑈 ∧ 𝑈 < 𝐵)) | |
15 | 3, 14 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐴 < 𝑈 ∧ 𝑈 < 𝐵)) |
16 | 15 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝐴 < 𝑈) |
17 | 10, 13, 16 | xrltled 13162 | . . . . 5 ⊢ (𝜑 → 𝐴 ≤ 𝑈) |
18 | iooss1 13392 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝑈) → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵)) | |
19 | 10, 17, 18 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵)) |
20 | dvferm.r | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) | |
21 | ssralv 4048 | . . . 4 ⊢ ((𝑈(,)𝐵) ⊆ (𝐴(,)𝐵) → (∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈) → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈))) | |
22 | 19, 20, 21 | sylc 65 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) |
23 | 1, 2, 3, 4, 5, 22 | dvferm1 25930 | . 2 ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) ≤ 0) |
24 | 9 | simprd 495 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
25 | 15 | simprd 495 | . . . . . 6 ⊢ (𝜑 → 𝑈 < 𝐵) |
26 | 13, 24, 25 | xrltled 13162 | . . . . 5 ⊢ (𝜑 → 𝑈 ≤ 𝐵) |
27 | iooss2 13393 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝑈 ≤ 𝐵) → (𝐴(,)𝑈) ⊆ (𝐴(,)𝐵)) | |
28 | 24, 26, 27 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐴(,)𝑈) ⊆ (𝐴(,)𝐵)) |
29 | ssralv 4048 | . . . 4 ⊢ ((𝐴(,)𝑈) ⊆ (𝐴(,)𝐵) → (∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈) → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹‘𝑦) ≤ (𝐹‘𝑈))) | |
30 | 28, 20, 29 | sylc 65 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) |
31 | 1, 2, 3, 4, 5, 30 | dvferm2 25932 | . 2 ⊢ (𝜑 → 0 ≤ ((ℝ D 𝐹)‘𝑈)) |
32 | dvfre 25896 | . . . . 5 ⊢ ((𝐹:𝑋⟶ℝ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) | |
33 | 1, 2, 32 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
34 | 33, 5 | ffvelcdmd 7095 | . . 3 ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℝ) |
35 | 0re 11247 | . . 3 ⊢ 0 ∈ ℝ | |
36 | letri3 11330 | . . 3 ⊢ ((((ℝ D 𝐹)‘𝑈) ∈ ℝ ∧ 0 ∈ ℝ) → (((ℝ D 𝐹)‘𝑈) = 0 ↔ (((ℝ D 𝐹)‘𝑈) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑈)))) | |
37 | 34, 35, 36 | sylancl 585 | . 2 ⊢ (𝜑 → (((ℝ D 𝐹)‘𝑈) = 0 ↔ (((ℝ D 𝐹)‘𝑈) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑈)))) |
38 | 23, 31, 37 | mpbir2and 712 | 1 ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ∀wral 3058 ⊆ wss 3947 ∅c0 4323 class class class wbr 5148 dom cdm 5678 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 ℝcr 11138 0cc0 11139 ℝ*cxr 11278 < clt 11279 ≤ cle 11280 (,)cioo 13357 D cdv 25805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9435 df-sup 9466 df-inf 9467 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-uz 12854 df-q 12964 df-rp 13008 df-xneg 13125 df-xadd 13126 df-xmul 13127 df-ioo 13361 df-icc 13364 df-fz 13518 df-seq 14000 df-exp 14060 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-struct 17116 df-slot 17151 df-ndx 17163 df-base 17181 df-plusg 17246 df-mulr 17247 df-starv 17248 df-tset 17252 df-ple 17253 df-ds 17255 df-unif 17256 df-rest 17404 df-topn 17405 df-topgen 17425 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22862 df-cld 22936 df-ntr 22937 df-cls 22938 df-nei 23015 df-lp 23053 df-perf 23054 df-cn 23144 df-cnp 23145 df-haus 23232 df-fil 23763 df-fm 23855 df-flim 23856 df-flf 23857 df-xms 24239 df-ms 24240 df-cncf 24811 df-limc 25808 df-dv 25809 |
This theorem is referenced by: rollelem 25934 dvivthlem1 25954 |
Copyright terms: Public domain | W3C validator |