Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhbase Structured version   Visualization version   GIF version

Theorem dvhbase 40584
Description: The ring base set of the constructed full vector space H. (Contributed by NM, 29-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvhbase.h 𝐻 = (LHyp‘𝐾)
dvhbase.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhbase.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhbase.f 𝐹 = (Scalar‘𝑈)
dvhbase.c 𝐶 = (Base‘𝐹)
Assertion
Ref Expression
dvhbase ((𝐾𝑋𝑊𝐻) → 𝐶 = 𝐸)

Proof of Theorem dvhbase
StepHypRef Expression
1 dvhbase.c . . 3 𝐶 = (Base‘𝐹)
2 dvhbase.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2725 . . . . 5 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
4 dvhbase.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 dvhbase.f . . . . 5 𝐹 = (Scalar‘𝑈)
62, 3, 4, 5dvhsca 40583 . . . 4 ((𝐾𝑋𝑊𝐻) → 𝐹 = ((EDRing‘𝐾)‘𝑊))
76fveq2d 6894 . . 3 ((𝐾𝑋𝑊𝐻) → (Base‘𝐹) = (Base‘((EDRing‘𝐾)‘𝑊)))
81, 7eqtrid 2777 . 2 ((𝐾𝑋𝑊𝐻) → 𝐶 = (Base‘((EDRing‘𝐾)‘𝑊)))
9 eqid 2725 . . 3 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
10 dvhbase.e . . 3 𝐸 = ((TEndo‘𝐾)‘𝑊)
11 eqid 2725 . . 3 (Base‘((EDRing‘𝐾)‘𝑊)) = (Base‘((EDRing‘𝐾)‘𝑊))
122, 9, 10, 3, 11erngbase 40302 . 2 ((𝐾𝑋𝑊𝐻) → (Base‘((EDRing‘𝐾)‘𝑊)) = 𝐸)
138, 12eqtrd 2765 1 ((𝐾𝑋𝑊𝐻) → 𝐶 = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cfv 6541  Basecbs 17177  Scalarcsca 17233  LHypclh 39485  LTrncltrn 39602  TEndoctendo 40253  EDRingcedring 40254  DVecHcdvh 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-n0 12501  df-z 12587  df-uz 12851  df-fz 13515  df-struct 17113  df-slot 17148  df-ndx 17160  df-base 17178  df-plusg 17243  df-mulr 17244  df-sca 17246  df-vsca 17247  df-edring 40258  df-dvech 40580
This theorem is referenced by:  dvhvaddass  40598  tendoinvcl  40605  tendolinv  40606  tendorinv  40607  dvhgrp  40608  dvhlveclem  40609  dib1dim2  40669  diblss  40671  diclss  40694  diclspsn  40695  cdlemn4  40699  dih1dimatlem  40830
  Copyright terms: Public domain W3C validator
OSZAR »