![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhsca | Structured version Visualization version GIF version |
Description: The ring of scalars of the constructed full vector space H. (Contributed by NM, 22-Jun-2014.) |
Ref | Expression |
---|---|
dvhsca.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvhsca.d | ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) |
dvhsca.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dvhsca.f | ⊢ 𝐹 = (Scalar‘𝑈) |
Ref | Expression |
---|---|
dvhsca | ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝐹 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvhsca.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2725 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
3 | eqid 2725 | . . . 4 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
4 | dvhsca.d | . . . 4 ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) | |
5 | dvhsca.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | 1, 2, 3, 4, 5 | dvhset 40623 | . . 3 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝑈 = ({〈(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx), 𝐷〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉})) |
7 | 6 | fveq2d 6898 | . 2 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → (Scalar‘𝑈) = (Scalar‘({〈(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx), 𝐷〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}))) |
8 | dvhsca.f | . 2 ⊢ 𝐹 = (Scalar‘𝑈) | |
9 | 4 | fvexi 6908 | . . 3 ⊢ 𝐷 ∈ V |
10 | eqid 2725 | . . . 4 ⊢ ({〈(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx), 𝐷〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}) = ({〈(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx), 𝐷〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}) | |
11 | 10 | lmodsca 17308 | . . 3 ⊢ (𝐷 ∈ V → 𝐷 = (Scalar‘({〈(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx), 𝐷〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}))) |
12 | 9, 11 | ax-mp 5 | . 2 ⊢ 𝐷 = (Scalar‘({〈(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx), 𝐷〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉})) |
13 | 7, 8, 12 | 3eqtr4g 2790 | 1 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝐹 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3463 ∪ cun 3943 {csn 4629 {ctp 4633 〈cop 4635 ↦ cmpt 5231 × cxp 5675 ∘ ccom 5681 ‘cfv 6547 ∈ cmpo 7419 1st c1st 7990 2nd c2nd 7991 ndxcnx 17161 Basecbs 17179 +gcplusg 17232 Scalarcsca 17235 ·𝑠 cvsca 17236 LHypclh 39526 LTrncltrn 39643 TEndoctendo 40294 EDRingcedring 40295 DVecHcdvh 40620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-struct 17115 df-slot 17150 df-ndx 17162 df-base 17180 df-plusg 17245 df-sca 17248 df-vsca 17249 df-dvech 40621 |
This theorem is referenced by: dvhbase 40625 dvhfplusr 40626 dvhfmulr 40627 dvhfvadd 40633 dvhvaddass 40639 tendoinvcl 40646 tendolinv 40647 tendorinv 40648 dvhgrp 40649 dvhlveclem 40650 cdlemn4 40740 hlhilsbase2 41488 hlhilsplus2 41489 hlhilsmul2 41490 |
Copyright terms: Public domain | W3C validator |