Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhsca Structured version   Visualization version   GIF version

Theorem dvhsca 40610
Description: The ring of scalars of the constructed full vector space H. (Contributed by NM, 22-Jun-2014.)
Hypotheses
Ref Expression
dvhsca.h 𝐻 = (LHyp‘𝐾)
dvhsca.d 𝐷 = ((EDRing‘𝐾)‘𝑊)
dvhsca.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhsca.f 𝐹 = (Scalar‘𝑈)
Assertion
Ref Expression
dvhsca ((𝐾𝑋𝑊𝐻) → 𝐹 = 𝐷)

Proof of Theorem dvhsca
Dummy variables 𝑓 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhsca.h . . . 4 𝐻 = (LHyp‘𝐾)
2 eqid 2725 . . . 4 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
3 eqid 2725 . . . 4 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
4 dvhsca.d . . . 4 𝐷 = ((EDRing‘𝐾)‘𝑊)
5 dvhsca.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
61, 2, 3, 4, 5dvhset 40609 . . 3 ((𝐾𝑋𝑊𝐻) → 𝑈 = ({⟨(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}))
76fveq2d 6895 . 2 ((𝐾𝑋𝑊𝐻) → (Scalar‘𝑈) = (Scalar‘({⟨(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩})))
8 dvhsca.f . 2 𝐹 = (Scalar‘𝑈)
94fvexi 6905 . . 3 𝐷 ∈ V
10 eqid 2725 . . . 4 ({⟨(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}) = ({⟨(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩})
1110lmodsca 17306 . . 3 (𝐷 ∈ V → 𝐷 = (Scalar‘({⟨(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩})))
129, 11ax-mp 5 . 2 𝐷 = (Scalar‘({⟨(Base‘ndx), (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}))
137, 8, 123eqtr4g 2790 1 ((𝐾𝑋𝑊𝐻) → 𝐹 = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3463  cun 3938  {csn 4624  {ctp 4628  cop 4630  cmpt 5226   × cxp 5670  ccom 5676  cfv 6542  cmpo 7417  1st c1st 7987  2nd c2nd 7988  ndxcnx 17159  Basecbs 17177  +gcplusg 17230  Scalarcsca 17233   ·𝑠 cvsca 17234  LHypclh 39512  LTrncltrn 39629  TEndoctendo 40280  EDRingcedring 40281  DVecHcdvh 40606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-n0 12501  df-z 12587  df-uz 12851  df-fz 13515  df-struct 17113  df-slot 17148  df-ndx 17160  df-base 17178  df-plusg 17243  df-sca 17246  df-vsca 17247  df-dvech 40607
This theorem is referenced by:  dvhbase  40611  dvhfplusr  40612  dvhfmulr  40613  dvhfvadd  40619  dvhvaddass  40625  tendoinvcl  40632  tendolinv  40633  tendorinv  40634  dvhgrp  40635  dvhlveclem  40636  cdlemn4  40726  hlhilsbase2  41474  hlhilsplus2  41475  hlhilsmul2  41476
  Copyright terms: Public domain W3C validator
OSZAR »