MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eflt Structured version   Visualization version   GIF version

Theorem eflt 16093
Description: The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
eflt ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵)))

Proof of Theorem eflt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tru 1538 . 2
2 fveq2 6897 . . 3 (𝑥 = 𝑦 → (exp‘𝑥) = (exp‘𝑦))
3 fveq2 6897 . . 3 (𝑥 = 𝐴 → (exp‘𝑥) = (exp‘𝐴))
4 fveq2 6897 . . 3 (𝑥 = 𝐵 → (exp‘𝑥) = (exp‘𝐵))
5 ssid 4002 . . 3 ℝ ⊆ ℝ
6 reefcl 16063 . . . 4 (𝑥 ∈ ℝ → (exp‘𝑥) ∈ ℝ)
76adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ) → (exp‘𝑥) ∈ ℝ)
8 simp2 1135 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
9 simp1 1134 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
108, 9resubcld 11672 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℝ)
11 posdif 11737 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ 0 < (𝑦𝑥)))
1211biimp3a 1466 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 < (𝑦𝑥))
1310, 12elrpd 13045 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℝ+)
14 efgt1 16092 . . . . . . . 8 ((𝑦𝑥) ∈ ℝ+ → 1 < (exp‘(𝑦𝑥)))
1513, 14syl 17 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 1 < (exp‘(𝑦𝑥)))
169reefcld 16064 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) ∈ ℝ)
1710reefcld 16064 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑦𝑥)) ∈ ℝ)
18 efgt0 16079 . . . . . . . . 9 (𝑥 ∈ ℝ → 0 < (exp‘𝑥))
199, 18syl 17 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 < (exp‘𝑥))
20 ltmulgt11 12104 . . . . . . . 8 (((exp‘𝑥) ∈ ℝ ∧ (exp‘(𝑦𝑥)) ∈ ℝ ∧ 0 < (exp‘𝑥)) → (1 < (exp‘(𝑦𝑥)) ↔ (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦𝑥)))))
2116, 17, 19, 20syl3anc 1369 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 < (exp‘(𝑦𝑥)) ↔ (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦𝑥)))))
2215, 21mpbid 231 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦𝑥))))
239recnd 11272 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℂ)
2410recnd 11272 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℂ)
25 efadd 16070 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (𝑦𝑥) ∈ ℂ) → (exp‘(𝑥 + (𝑦𝑥))) = ((exp‘𝑥) · (exp‘(𝑦𝑥))))
2623, 24, 25syl2anc 583 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑥 + (𝑦𝑥))) = ((exp‘𝑥) · (exp‘(𝑦𝑥))))
278recnd 11272 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℂ)
2823, 27pncan3d 11604 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑥 + (𝑦𝑥)) = 𝑦)
2928fveq2d 6901 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑥 + (𝑦𝑥))) = (exp‘𝑦))
3026, 29eqtr3d 2770 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((exp‘𝑥) · (exp‘(𝑦𝑥))) = (exp‘𝑦))
3122, 30breqtrd 5174 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) < (exp‘𝑦))
32313expia 1119 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 → (exp‘𝑥) < (exp‘𝑦)))
3332adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦 → (exp‘𝑥) < (exp‘𝑦)))
342, 3, 4, 5, 7, 33ltord1 11770 . 2 ((⊤ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵)))
351, 34mpan 689 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wtru 1535  wcel 2099   class class class wbr 5148  cfv 6548  (class class class)co 7420  cc 11136  cr 11137  0cc0 11138  1c1 11139   + caddc 11141   · cmul 11143   < clt 11278  cmin 11474  +crp 13006  expce 16037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-er 8724  df-pm 8847  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-sup 9465  df-inf 9466  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-z 12589  df-uz 12853  df-rp 13007  df-ico 13362  df-fz 13517  df-fzo 13660  df-fl 13789  df-seq 13999  df-exp 14059  df-fac 14265  df-bc 14294  df-hash 14322  df-shft 15046  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-limsup 15447  df-clim 15464  df-rlim 15465  df-sum 15665  df-ef 16043
This theorem is referenced by:  efle  16094  reefiso  26384  logdivlti  26553  divlogrlim  26568  cxplt  26627  birthday  26885  cxploglim  26909  bposlem6  27221  bposlem9  27224  pntpbnd1a  27517  pntibndlem2  27523  pntlemb  27529  ostth2lem3  27567  ostth2  27569
  Copyright terms: Public domain W3C validator
OSZAR »