![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eflt | Structured version Visualization version GIF version |
Description: The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 17-Jul-2014.) |
Ref | Expression |
---|---|
eflt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1538 | . 2 ⊢ ⊤ | |
2 | fveq2 6897 | . . 3 ⊢ (𝑥 = 𝑦 → (exp‘𝑥) = (exp‘𝑦)) | |
3 | fveq2 6897 | . . 3 ⊢ (𝑥 = 𝐴 → (exp‘𝑥) = (exp‘𝐴)) | |
4 | fveq2 6897 | . . 3 ⊢ (𝑥 = 𝐵 → (exp‘𝑥) = (exp‘𝐵)) | |
5 | ssid 4002 | . . 3 ⊢ ℝ ⊆ ℝ | |
6 | reefcl 16063 | . . . 4 ⊢ (𝑥 ∈ ℝ → (exp‘𝑥) ∈ ℝ) | |
7 | 6 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (exp‘𝑥) ∈ ℝ) |
8 | simp2 1135 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ) | |
9 | simp1 1134 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ) | |
10 | 8, 9 | resubcld 11672 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦 − 𝑥) ∈ ℝ) |
11 | posdif 11737 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ 0 < (𝑦 − 𝑥))) | |
12 | 11 | biimp3a 1466 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 < (𝑦 − 𝑥)) |
13 | 10, 12 | elrpd 13045 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦 − 𝑥) ∈ ℝ+) |
14 | efgt1 16092 | . . . . . . . 8 ⊢ ((𝑦 − 𝑥) ∈ ℝ+ → 1 < (exp‘(𝑦 − 𝑥))) | |
15 | 13, 14 | syl 17 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 1 < (exp‘(𝑦 − 𝑥))) |
16 | 9 | reefcld 16064 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) ∈ ℝ) |
17 | 10 | reefcld 16064 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑦 − 𝑥)) ∈ ℝ) |
18 | efgt0 16079 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 0 < (exp‘𝑥)) | |
19 | 9, 18 | syl 17 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 < (exp‘𝑥)) |
20 | ltmulgt11 12104 | . . . . . . . 8 ⊢ (((exp‘𝑥) ∈ ℝ ∧ (exp‘(𝑦 − 𝑥)) ∈ ℝ ∧ 0 < (exp‘𝑥)) → (1 < (exp‘(𝑦 − 𝑥)) ↔ (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦 − 𝑥))))) | |
21 | 16, 17, 19, 20 | syl3anc 1369 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 < (exp‘(𝑦 − 𝑥)) ↔ (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦 − 𝑥))))) |
22 | 15, 21 | mpbid 231 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦 − 𝑥)))) |
23 | 9 | recnd 11272 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℂ) |
24 | 10 | recnd 11272 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦 − 𝑥) ∈ ℂ) |
25 | efadd 16070 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ (𝑦 − 𝑥) ∈ ℂ) → (exp‘(𝑥 + (𝑦 − 𝑥))) = ((exp‘𝑥) · (exp‘(𝑦 − 𝑥)))) | |
26 | 23, 24, 25 | syl2anc 583 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑥 + (𝑦 − 𝑥))) = ((exp‘𝑥) · (exp‘(𝑦 − 𝑥)))) |
27 | 8 | recnd 11272 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℂ) |
28 | 23, 27 | pncan3d 11604 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑥 + (𝑦 − 𝑥)) = 𝑦) |
29 | 28 | fveq2d 6901 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑥 + (𝑦 − 𝑥))) = (exp‘𝑦)) |
30 | 26, 29 | eqtr3d 2770 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((exp‘𝑥) · (exp‘(𝑦 − 𝑥))) = (exp‘𝑦)) |
31 | 22, 30 | breqtrd 5174 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) < (exp‘𝑦)) |
32 | 31 | 3expia 1119 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 → (exp‘𝑥) < (exp‘𝑦))) |
33 | 32 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦 → (exp‘𝑥) < (exp‘𝑦))) |
34 | 2, 3, 4, 5, 7, 33 | ltord1 11770 | . 2 ⊢ ((⊤ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) |
35 | 1, 34 | mpan 689 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ⊤wtru 1535 ∈ wcel 2099 class class class wbr 5148 ‘cfv 6548 (class class class)co 7420 ℂcc 11136 ℝcr 11137 0cc0 11138 1c1 11139 + caddc 11141 · cmul 11143 < clt 11278 − cmin 11474 ℝ+crp 13006 expce 16037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-pm 8847 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-sup 9465 df-inf 9466 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-ico 13362 df-fz 13517 df-fzo 13660 df-fl 13789 df-seq 13999 df-exp 14059 df-fac 14265 df-bc 14294 df-hash 14322 df-shft 15046 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-limsup 15447 df-clim 15464 df-rlim 15465 df-sum 15665 df-ef 16043 |
This theorem is referenced by: efle 16094 reefiso 26384 logdivlti 26553 divlogrlim 26568 cxplt 26627 birthday 26885 cxploglim 26909 bposlem6 27221 bposlem9 27224 pntpbnd1a 27517 pntibndlem2 27523 pntlemb 27529 ostth2lem3 27567 ostth2 27569 |
Copyright terms: Public domain | W3C validator |