Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem10 Structured version   Visualization version   GIF version

Theorem etransclem10 45634
Description: The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem10.n (𝜑𝑃 ∈ ℕ)
etransclem10.m (𝜑𝑀 ∈ ℕ0)
etransclem10.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem10.j (𝜑𝐽 ∈ ℤ)
Assertion
Ref Expression
etransclem10 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) ∈ ℤ)

Proof of Theorem etransclem10
StepHypRef Expression
1 0zd 12606 . 2 ((𝜑 ∧ (𝑃 − 1) < (𝐶‘0)) → 0 ∈ ℤ)
2 0zd 12606 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
3 etransclem10.n . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
4 nnm1nn0 12549 . . . . . . . . . . 11 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
53, 4syl 17 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℕ0)
65nn0zd 12620 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℤ)
7 etransclem10.c . . . . . . . . . . . 12 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
8 etransclem10.m . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ0)
9 nn0uz 12900 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
108, 9eleqtrdi 2838 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (ℤ‘0))
11 eluzfz1 13546 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
1210, 11syl 17 . . . . . . . . . . . 12 (𝜑 → 0 ∈ (0...𝑀))
137, 12ffvelcdmd 7098 . . . . . . . . . . 11 (𝜑 → (𝐶‘0) ∈ (0...𝑁))
1413elfzelzd 13540 . . . . . . . . . 10 (𝜑 → (𝐶‘0) ∈ ℤ)
156, 14zsubcld 12707 . . . . . . . . 9 (𝜑 → ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ)
162, 6, 153jca 1125 . . . . . . . 8 (𝜑 → (0 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ))
1716adantr 479 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (0 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ))
1814zred 12702 . . . . . . . . . 10 (𝜑 → (𝐶‘0) ∈ ℝ)
1918adantr 479 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) ∈ ℝ)
205nn0red 12569 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℝ)
2120adantr 479 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝑃 − 1) ∈ ℝ)
22 simpr 483 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ¬ (𝑃 − 1) < (𝐶‘0))
2319, 21, 22nltled 11400 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) ≤ (𝑃 − 1))
2421, 19subge0d 11840 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (0 ≤ ((𝑃 − 1) − (𝐶‘0)) ↔ (𝐶‘0) ≤ (𝑃 − 1)))
2523, 24mpbird 256 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → 0 ≤ ((𝑃 − 1) − (𝐶‘0)))
26 elfzle1 13542 . . . . . . . . . 10 ((𝐶‘0) ∈ (0...𝑁) → 0 ≤ (𝐶‘0))
2713, 26syl 17 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐶‘0))
2827adantr 479 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → 0 ≤ (𝐶‘0))
2921, 19subge02d 11842 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (0 ≤ (𝐶‘0) ↔ ((𝑃 − 1) − (𝐶‘0)) ≤ (𝑃 − 1)))
3028, 29mpbid 231 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ≤ (𝑃 − 1))
3117, 25, 30jca32 514 . . . . . 6 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((0 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ) ∧ (0 ≤ ((𝑃 − 1) − (𝐶‘0)) ∧ ((𝑃 − 1) − (𝐶‘0)) ≤ (𝑃 − 1))))
32 elfz2 13529 . . . . . 6 (((𝑃 − 1) − (𝐶‘0)) ∈ (0...(𝑃 − 1)) ↔ ((0 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ) ∧ (0 ≤ ((𝑃 − 1) − (𝐶‘0)) ∧ ((𝑃 − 1) − (𝐶‘0)) ≤ (𝑃 − 1))))
3331, 32sylibr 233 . . . . 5 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ (0...(𝑃 − 1)))
34 permnn 14323 . . . . 5 (((𝑃 − 1) − (𝐶‘0)) ∈ (0...(𝑃 − 1)) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) ∈ ℕ)
3533, 34syl 17 . . . 4 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) ∈ ℕ)
3635nnzd 12621 . . 3 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) ∈ ℤ)
37 etransclem10.j . . . . 5 (𝜑𝐽 ∈ ℤ)
3837adantr 479 . . . 4 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → 𝐽 ∈ ℤ)
3915adantr 479 . . . . 5 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ)
40 elnn0z 12607 . . . . 5 (((𝑃 − 1) − (𝐶‘0)) ∈ ℕ0 ↔ (((𝑃 − 1) − (𝐶‘0)) ∈ ℤ ∧ 0 ≤ ((𝑃 − 1) − (𝐶‘0))))
4139, 25, 40sylanbrc 581 . . . 4 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℕ0)
42 zexpcl 14079 . . . 4 ((𝐽 ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℕ0) → (𝐽↑((𝑃 − 1) − (𝐶‘0))) ∈ ℤ)
4338, 41, 42syl2anc 582 . . 3 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐽↑((𝑃 − 1) − (𝐶‘0))) ∈ ℤ)
4436, 43zmulcld 12708 . 2 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))) ∈ ℤ)
451, 44ifclda 4565 1 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084  wcel 2098  ifcif 4530   class class class wbr 5150  wf 6547  cfv 6551  (class class class)co 7424  cr 11143  0cc0 11144  1c1 11145   · cmul 11149   < clt 11284  cle 11285  cmin 11480   / cdiv 11907  cn 12248  0cn0 12508  cz 12594  cuz 12858  ...cfz 13522  cexp 14064  !cfa 14270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-n0 12509  df-z 12595  df-uz 12859  df-rp 13013  df-fz 13523  df-seq 14005  df-exp 14065  df-fac 14271  df-bc 14300
This theorem is referenced by:  etransclem25  45649  etransclem26  45650  etransclem35  45659  etransclem37  45661
  Copyright terms: Public domain W3C validator
OSZAR »