![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno2 | Structured version Visualization version GIF version |
Description: The 2 nd Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
Ref | Expression |
---|---|
fmtno2 | ⊢ (FermatNo‘2) = ;17 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12520 | . . 3 ⊢ 2 ∈ ℕ0 | |
2 | fmtno 46976 | . . 3 ⊢ (2 ∈ ℕ0 → (FermatNo‘2) = ((2↑(2↑2)) + 1)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (FermatNo‘2) = ((2↑(2↑2)) + 1) |
4 | sq2 14194 | . . . . 5 ⊢ (2↑2) = 4 | |
5 | 4 | oveq2i 7429 | . . . 4 ⊢ (2↑(2↑2)) = (2↑4) |
6 | 5 | oveq1i 7428 | . . 3 ⊢ ((2↑(2↑2)) + 1) = ((2↑4) + 1) |
7 | 2exp4 17055 | . . . 4 ⊢ (2↑4) = ;16 | |
8 | 7 | oveq1i 7428 | . . 3 ⊢ ((2↑4) + 1) = (;16 + 1) |
9 | 1nn0 12519 | . . . 4 ⊢ 1 ∈ ℕ0 | |
10 | 6nn0 12524 | . . . 4 ⊢ 6 ∈ ℕ0 | |
11 | 6p1e7 12391 | . . . 4 ⊢ (6 + 1) = 7 | |
12 | eqid 2725 | . . . 4 ⊢ ;16 = ;16 | |
13 | 9, 10, 11, 12 | decsuc 12739 | . . 3 ⊢ (;16 + 1) = ;17 |
14 | 6, 8, 13 | 3eqtri 2757 | . 2 ⊢ ((2↑(2↑2)) + 1) = ;17 |
15 | 3, 14 | eqtri 2753 | 1 ⊢ (FermatNo‘2) = ;17 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 ‘cfv 6548 (class class class)co 7418 1c1 11140 + caddc 11142 2c2 12298 4c4 12300 6c6 12302 7c7 12303 ℕ0cn0 12503 ;cdc 12708 ↑cexp 14060 FermatNocfmtno 46974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6306 df-ord 6373 df-on 6374 df-lim 6375 df-suc 6376 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7374 df-ov 7421 df-oprab 7422 df-mpo 7423 df-om 7871 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-uz 12854 df-seq 14001 df-exp 14061 df-fmtno 46975 |
This theorem is referenced by: fmtno2prm 47007 |
Copyright terms: Public domain | W3C validator |