MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucass Structured version   Visualization version   GIF version

Theorem fucass 17960
Description: Associativity of natural transformation composition. Remark 6.14(b) in [Adamek] p. 87. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fucass.q 𝑄 = (𝐶 FuncCat 𝐷)
fucass.n 𝑁 = (𝐶 Nat 𝐷)
fucass.x = (comp‘𝑄)
fucass.r (𝜑𝑅 ∈ (𝐹𝑁𝐺))
fucass.s (𝜑𝑆 ∈ (𝐺𝑁𝐻))
fucass.t (𝜑𝑇 ∈ (𝐻𝑁𝐾))
Assertion
Ref Expression
fucass (𝜑 → ((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)(⟨𝐹, 𝐺 𝐾)𝑅) = (𝑇(⟨𝐹, 𝐻 𝐾)(𝑆(⟨𝐹, 𝐺 𝐻)𝑅)))

Proof of Theorem fucass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
2 eqid 2725 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
3 eqid 2725 . . . . 5 (comp‘𝐷) = (comp‘𝐷)
4 fucass.r . . . . . . . . . 10 (𝜑𝑅 ∈ (𝐹𝑁𝐺))
5 fucass.n . . . . . . . . . . 11 𝑁 = (𝐶 Nat 𝐷)
65natrcl 17940 . . . . . . . . . 10 (𝑅 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
74, 6syl 17 . . . . . . . . 9 (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
87simpld 493 . . . . . . . 8 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
9 funcrcl 17849 . . . . . . . 8 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
108, 9syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1110simprd 494 . . . . . 6 (𝜑𝐷 ∈ Cat)
1211adantr 479 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
13 eqid 2725 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
14 relfunc 17848 . . . . . . . 8 Rel (𝐶 Func 𝐷)
15 1st2ndbr 8045 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1614, 8, 15sylancr 585 . . . . . . 7 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1713, 1, 16funcf1 17852 . . . . . 6 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
1817ffvelcdmda 7091 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
197simprd 494 . . . . . . . 8 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
20 1st2ndbr 8045 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2114, 19, 20sylancr 585 . . . . . . 7 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2213, 1, 21funcf1 17852 . . . . . 6 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
2322ffvelcdmda 7091 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
24 fucass.t . . . . . . . . . 10 (𝜑𝑇 ∈ (𝐻𝑁𝐾))
255natrcl 17940 . . . . . . . . . 10 (𝑇 ∈ (𝐻𝑁𝐾) → (𝐻 ∈ (𝐶 Func 𝐷) ∧ 𝐾 ∈ (𝐶 Func 𝐷)))
2624, 25syl 17 . . . . . . . . 9 (𝜑 → (𝐻 ∈ (𝐶 Func 𝐷) ∧ 𝐾 ∈ (𝐶 Func 𝐷)))
2726simpld 493 . . . . . . . 8 (𝜑𝐻 ∈ (𝐶 Func 𝐷))
28 1st2ndbr 8045 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷)) → (1st𝐻)(𝐶 Func 𝐷)(2nd𝐻))
2914, 27, 28sylancr 585 . . . . . . 7 (𝜑 → (1st𝐻)(𝐶 Func 𝐷)(2nd𝐻))
3013, 1, 29funcf1 17852 . . . . . 6 (𝜑 → (1st𝐻):(Base‘𝐶)⟶(Base‘𝐷))
3130ffvelcdmda 7091 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐻)‘𝑥) ∈ (Base‘𝐷))
325, 4nat1st2nd 17941 . . . . . . 7 (𝜑𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
3332adantr 479 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
34 simpr 483 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
355, 33, 13, 2, 34natcl 17943 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑅𝑥) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)))
36 fucass.s . . . . . . . 8 (𝜑𝑆 ∈ (𝐺𝑁𝐻))
375, 36nat1st2nd 17941 . . . . . . 7 (𝜑𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩𝑁⟨(1st𝐻), (2nd𝐻)⟩))
3837adantr 479 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩𝑁⟨(1st𝐻), (2nd𝐻)⟩))
395, 38, 13, 2, 34natcl 17943 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑆𝑥) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
4026simprd 494 . . . . . . . 8 (𝜑𝐾 ∈ (𝐶 Func 𝐷))
41 1st2ndbr 8045 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐾 ∈ (𝐶 Func 𝐷)) → (1st𝐾)(𝐶 Func 𝐷)(2nd𝐾))
4214, 40, 41sylancr 585 . . . . . . 7 (𝜑 → (1st𝐾)(𝐶 Func 𝐷)(2nd𝐾))
4313, 1, 42funcf1 17852 . . . . . 6 (𝜑 → (1st𝐾):(Base‘𝐶)⟶(Base‘𝐷))
4443ffvelcdmda 7091 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐾)‘𝑥) ∈ (Base‘𝐷))
455, 24nat1st2nd 17941 . . . . . . 7 (𝜑𝑇 ∈ (⟨(1st𝐻), (2nd𝐻)⟩𝑁⟨(1st𝐾), (2nd𝐾)⟩))
4645adantr 479 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑇 ∈ (⟨(1st𝐻), (2nd𝐻)⟩𝑁⟨(1st𝐾), (2nd𝐾)⟩))
475, 46, 13, 2, 34natcl 17943 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑇𝑥) ∈ (((1st𝐻)‘𝑥)(Hom ‘𝐷)((1st𝐾)‘𝑥)))
481, 2, 3, 12, 18, 23, 31, 35, 39, 44, 47catass 17666 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑇𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑆𝑥))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑅𝑥)) = ((𝑇𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))))
49 fucass.q . . . . . 6 𝑄 = (𝐶 FuncCat 𝐷)
50 fucass.x . . . . . 6 = (comp‘𝑄)
5136adantr 479 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑆 ∈ (𝐺𝑁𝐻))
5224adantr 479 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑇 ∈ (𝐻𝑁𝐾))
5349, 5, 13, 3, 50, 51, 52, 34fuccoval 17955 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)‘𝑥) = ((𝑇𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑆𝑥)))
5453oveq1d 7432 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)‘𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑅𝑥)) = (((𝑇𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑆𝑥))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑅𝑥)))
554adantr 479 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅 ∈ (𝐹𝑁𝐺))
5649, 5, 13, 3, 50, 55, 51, 34fuccoval 17955 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥) = ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥)))
5756oveq2d 7433 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑇𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥)) = ((𝑇𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))))
5848, 54, 573eqtr4d 2775 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)‘𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑅𝑥)) = ((𝑇𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥)))
5958mpteq2dva 5248 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ (((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)‘𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑅𝑥))) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑇𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥))))
6049, 5, 50, 36, 24fuccocl 17956 . . 3 (𝜑 → (𝑇(⟨𝐺, 𝐻 𝐾)𝑆) ∈ (𝐺𝑁𝐾))
6149, 5, 13, 3, 50, 4, 60fucco 17954 . 2 (𝜑 → ((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)(⟨𝐹, 𝐺 𝐾)𝑅) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)‘𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑅𝑥))))
6249, 5, 50, 4, 36fuccocl 17956 . . 3 (𝜑 → (𝑆(⟨𝐹, 𝐺 𝐻)𝑅) ∈ (𝐹𝑁𝐻))
6349, 5, 13, 3, 50, 62, 24fucco 17954 . 2 (𝜑 → (𝑇(⟨𝐹, 𝐻 𝐾)(𝑆(⟨𝐹, 𝐺 𝐻)𝑅)) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑇𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥))))
6459, 61, 633eqtr4d 2775 1 (𝜑 → ((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)(⟨𝐹, 𝐺 𝐾)𝑅) = (𝑇(⟨𝐹, 𝐻 𝐾)(𝑆(⟨𝐹, 𝐺 𝐻)𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cop 4635   class class class wbr 5148  cmpt 5231  Rel wrel 5682  cfv 6547  (class class class)co 7417  1st c1st 7990  2nd c2nd 7991  Basecbs 17180  Hom chom 17244  compcco 17245  Catccat 17644   Func cfunc 17840   Nat cnat 17931   FuncCat cfuc 17932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-map 8845  df-ixp 8915  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-fz 13517  df-struct 17116  df-slot 17151  df-ndx 17163  df-base 17181  df-hom 17257  df-cco 17258  df-cat 17648  df-func 17844  df-nat 17933  df-fuc 17934
This theorem is referenced by:  fuccatid  17961
  Copyright terms: Public domain W3C validator
OSZAR »