Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghmqusnsglem1 Structured version   Visualization version   GIF version

Theorem ghmqusnsglem1 33123
Description: Lemma for ghmqusnsg 33125. (Contributed by Thierry Arnoux, 13-May-2025.)
Hypotheses
Ref Expression
ghmqusnsg.0 0 = (0g𝐻)
ghmqusnsg.f (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
ghmqusnsg.k 𝐾 = (𝐹 “ { 0 })
ghmqusnsg.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
ghmqusnsg.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
ghmqusnsg.n (𝜑𝑁𝐾)
ghmqusnsg.1 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
ghmqusnsglem1.x (𝜑𝑋 ∈ (Base‘𝐺))
Assertion
Ref Expression
ghmqusnsglem1 (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝑁)) = (𝐹𝑋))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝐾,𝑞   𝑁,𝑞   𝑄,𝑞   𝑋,𝑞   𝜑,𝑞
Allowed substitution hints:   𝐻(𝑞)   𝐽(𝑞)   0 (𝑞)

Proof of Theorem ghmqusnsglem1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmqusnsg.j . . 3 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
2 imaeq2 6053 . . . 4 (𝑞 = [𝑋](𝐺 ~QG 𝑁) → (𝐹𝑞) = (𝐹 “ [𝑋](𝐺 ~QG 𝑁)))
32unieqd 4916 . . 3 (𝑞 = [𝑋](𝐺 ~QG 𝑁) → (𝐹𝑞) = (𝐹 “ [𝑋](𝐺 ~QG 𝑁)))
4 ghmqusnsglem1.x . . . . 5 (𝜑𝑋 ∈ (Base‘𝐺))
5 ovex 7447 . . . . . 6 (𝐺 ~QG 𝑁) ∈ V
65ecelqsi 8785 . . . . 5 (𝑋 ∈ (Base‘𝐺) → [𝑋](𝐺 ~QG 𝑁) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)))
74, 6syl 17 . . . 4 (𝜑 → [𝑋](𝐺 ~QG 𝑁) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)))
8 ghmqusnsg.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
98a1i 11 . . . . 5 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)))
10 eqidd 2729 . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
11 ovexd 7449 . . . . 5 (𝜑 → (𝐺 ~QG 𝑁) ∈ V)
12 ghmqusnsg.f . . . . . 6 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
13 ghmgrp1 19165 . . . . . 6 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
1412, 13syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
159, 10, 11, 14qusbas 17520 . . . 4 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
167, 15eleqtrd 2831 . . 3 (𝜑 → [𝑋](𝐺 ~QG 𝑁) ∈ (Base‘𝑄))
1712imaexd 7918 . . . 4 (𝜑 → (𝐹 “ [𝑋](𝐺 ~QG 𝑁)) ∈ V)
1817uniexd 7741 . . 3 (𝜑 (𝐹 “ [𝑋](𝐺 ~QG 𝑁)) ∈ V)
191, 3, 16, 18fvmptd3 7022 . 2 (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝑁)) = (𝐹 “ [𝑋](𝐺 ~QG 𝑁)))
20 eqid 2728 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
21 eqid 2728 . . . . . . . . . 10 (Base‘𝐻) = (Base‘𝐻)
2220, 21ghmf 19167 . . . . . . . . 9 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
2312, 22syl 17 . . . . . . . 8 (𝜑𝐹:(Base‘𝐺)⟶(Base‘𝐻))
2423ffnd 6717 . . . . . . 7 (𝜑𝐹 Fn (Base‘𝐺))
25 ghmqusnsg.1 . . . . . . . . 9 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
26 nsgsubg 19106 . . . . . . . . 9 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
27 eqid 2728 . . . . . . . . . 10 (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁)
2820, 27eqger 19126 . . . . . . . . 9 (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
2925, 26, 283syl 18 . . . . . . . 8 (𝜑 → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
3029ecss 8765 . . . . . . 7 (𝜑 → [𝑋](𝐺 ~QG 𝑁) ⊆ (Base‘𝐺))
3124, 30fvelimabd 6966 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐹 “ [𝑋](𝐺 ~QG 𝑁)) ↔ ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝑁)(𝐹𝑧) = 𝑦))
32 simpr 484 . . . . . . . . . 10 (((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) ∧ (𝐹𝑧) = 𝑦) → (𝐹𝑧) = 𝑦)
3312adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
34 eqid 2728 . . . . . . . . . . . . . . . 16 (invg𝐺) = (invg𝐺)
3533, 13syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝐺 ∈ Grp)
364adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝑋 ∈ (Base‘𝐺))
3720, 34, 35, 36grpinvcld 18938 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((invg𝐺)‘𝑋) ∈ (Base‘𝐺))
3830sselda 3978 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝑧 ∈ (Base‘𝐺))
39 eqid 2728 . . . . . . . . . . . . . . . 16 (+g𝐺) = (+g𝐺)
40 eqid 2728 . . . . . . . . . . . . . . . 16 (+g𝐻) = (+g𝐻)
4120, 39, 40ghmlin 19168 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ ((invg𝐺)‘𝑋) ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = ((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧)))
4233, 37, 38, 41syl3anc 1369 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = ((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧)))
4324adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝐹 Fn (Base‘𝐺))
44 ghmqusnsg.n . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁𝐾)
45 ghmqusnsg.k . . . . . . . . . . . . . . . . . . 19 𝐾 = (𝐹 “ { 0 })
4644, 45sseqtrdi 4028 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ⊆ (𝐹 “ { 0 }))
4746adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝑁 ⊆ (𝐹 “ { 0 }))
4820subgss 19075 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 ⊆ (Base‘𝐺))
4925, 26, 483syl 18 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ⊆ (Base‘𝐺))
5049adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝑁 ⊆ (Base‘𝐺))
51 vex 3474 . . . . . . . . . . . . . . . . . . . . 21 𝑧 ∈ V
52 elecg 8761 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ V ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑧 ∈ [𝑋](𝐺 ~QG 𝑁) ↔ 𝑋(𝐺 ~QG 𝑁)𝑧))
5351, 52mpan 689 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∈ (Base‘𝐺) → (𝑧 ∈ [𝑋](𝐺 ~QG 𝑁) ↔ 𝑋(𝐺 ~QG 𝑁)𝑧))
5453biimpa 476 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝑋(𝐺 ~QG 𝑁)𝑧)
554, 54sylan 579 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝑋(𝐺 ~QG 𝑁)𝑧)
5620, 34, 39, 27eqgval 19125 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ 𝑁 ⊆ (Base‘𝐺)) → (𝑋(𝐺 ~QG 𝑁)𝑧 ↔ (𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺) ∧ (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ 𝑁)))
5756biimpa 476 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ Grp ∧ 𝑁 ⊆ (Base‘𝐺)) ∧ 𝑋(𝐺 ~QG 𝑁)𝑧) → (𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺) ∧ (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ 𝑁))
5857simp3d 1142 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ Grp ∧ 𝑁 ⊆ (Base‘𝐺)) ∧ 𝑋(𝐺 ~QG 𝑁)𝑧) → (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ 𝑁)
5935, 50, 55, 58syl21anc 837 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ 𝑁)
6047, 59sseldd 3979 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (𝐹 “ { 0 }))
61 fniniseg 7063 . . . . . . . . . . . . . . . . 17 (𝐹 Fn (Base‘𝐺) → ((((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (𝐹 “ { 0 }) ↔ ((((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = 0 )))
6261biimpa 476 . . . . . . . . . . . . . . . 16 ((𝐹 Fn (Base‘𝐺) ∧ (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (𝐹 “ { 0 })) → ((((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = 0 ))
6343, 60, 62syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = 0 ))
6463simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = 0 )
6542, 64eqtr3d 2770 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧)) = 0 )
6665oveq2d 7430 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((𝐹𝑋)(+g𝐻)((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧))) = ((𝐹𝑋)(+g𝐻) 0 ))
67 eqid 2728 . . . . . . . . . . . . . . . . 17 (invg𝐻) = (invg𝐻)
6820, 34, 67ghminv 19170 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑋 ∈ (Base‘𝐺)) → (𝐹‘((invg𝐺)‘𝑋)) = ((invg𝐻)‘(𝐹𝑋)))
6933, 36, 68syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (𝐹‘((invg𝐺)‘𝑋)) = ((invg𝐻)‘(𝐹𝑋)))
7069oveq1d 7429 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧)) = (((invg𝐻)‘(𝐹𝑋))(+g𝐻)(𝐹𝑧)))
7170oveq2d 7430 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((𝐹𝑋)(+g𝐻)((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧))) = ((𝐹𝑋)(+g𝐻)(((invg𝐻)‘(𝐹𝑋))(+g𝐻)(𝐹𝑧))))
72 ghmgrp2 19166 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
7333, 72syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝐻 ∈ Grp)
7433, 22syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
7574, 36ffvelcdmd 7089 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (𝐹𝑋) ∈ (Base‘𝐻))
7674, 38ffvelcdmd 7089 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (𝐹𝑧) ∈ (Base‘𝐻))
7721, 40, 67grpasscan1 18951 . . . . . . . . . . . . . 14 ((𝐻 ∈ Grp ∧ (𝐹𝑋) ∈ (Base‘𝐻) ∧ (𝐹𝑧) ∈ (Base‘𝐻)) → ((𝐹𝑋)(+g𝐻)(((invg𝐻)‘(𝐹𝑋))(+g𝐻)(𝐹𝑧))) = (𝐹𝑧))
7873, 75, 76, 77syl3anc 1369 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((𝐹𝑋)(+g𝐻)(((invg𝐻)‘(𝐹𝑋))(+g𝐻)(𝐹𝑧))) = (𝐹𝑧))
7971, 78eqtrd 2768 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((𝐹𝑋)(+g𝐻)((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧))) = (𝐹𝑧))
80 ghmqusnsg.0 . . . . . . . . . . . . 13 0 = (0g𝐻)
8121, 40, 80, 73, 75grpridd 18920 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((𝐹𝑋)(+g𝐻) 0 ) = (𝐹𝑋))
8266, 79, 813eqtr3d 2776 . . . . . . . . . . 11 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (𝐹𝑧) = (𝐹𝑋))
8382adantr 480 . . . . . . . . . 10 (((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) ∧ (𝐹𝑧) = 𝑦) → (𝐹𝑧) = (𝐹𝑋))
8432, 83eqtr3d 2770 . . . . . . . . 9 (((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) ∧ (𝐹𝑧) = 𝑦) → 𝑦 = (𝐹𝑋))
8584r19.29an 3154 . . . . . . . 8 ((𝜑 ∧ ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝑁)(𝐹𝑧) = 𝑦) → 𝑦 = (𝐹𝑋))
86 fveqeq2 6900 . . . . . . . . 9 (𝑧 = 𝑋 → ((𝐹𝑧) = 𝑦 ↔ (𝐹𝑋) = 𝑦))
87 ecref 8762 . . . . . . . . . . 11 (((𝐺 ~QG 𝑁) Er (Base‘𝐺) ∧ 𝑋 ∈ (Base‘𝐺)) → 𝑋 ∈ [𝑋](𝐺 ~QG 𝑁))
8829, 4, 87syl2anc 583 . . . . . . . . . 10 (𝜑𝑋 ∈ [𝑋](𝐺 ~QG 𝑁))
8988adantr 480 . . . . . . . . 9 ((𝜑𝑦 = (𝐹𝑋)) → 𝑋 ∈ [𝑋](𝐺 ~QG 𝑁))
90 simpr 484 . . . . . . . . . 10 ((𝜑𝑦 = (𝐹𝑋)) → 𝑦 = (𝐹𝑋))
9190eqcomd 2734 . . . . . . . . 9 ((𝜑𝑦 = (𝐹𝑋)) → (𝐹𝑋) = 𝑦)
9286, 89, 91rspcedvdw 3611 . . . . . . . 8 ((𝜑𝑦 = (𝐹𝑋)) → ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝑁)(𝐹𝑧) = 𝑦)
9385, 92impbida 800 . . . . . . 7 (𝜑 → (∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝑁)(𝐹𝑧) = 𝑦𝑦 = (𝐹𝑋)))
94 velsn 4640 . . . . . . 7 (𝑦 ∈ {(𝐹𝑋)} ↔ 𝑦 = (𝐹𝑋))
9593, 94bitr4di 289 . . . . . 6 (𝜑 → (∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝑁)(𝐹𝑧) = 𝑦𝑦 ∈ {(𝐹𝑋)}))
9631, 95bitrd 279 . . . . 5 (𝜑 → (𝑦 ∈ (𝐹 “ [𝑋](𝐺 ~QG 𝑁)) ↔ 𝑦 ∈ {(𝐹𝑋)}))
9796eqrdv 2726 . . . 4 (𝜑 → (𝐹 “ [𝑋](𝐺 ~QG 𝑁)) = {(𝐹𝑋)})
9897unieqd 4916 . . 3 (𝜑 (𝐹 “ [𝑋](𝐺 ~QG 𝑁)) = {(𝐹𝑋)})
99 fvex 6904 . . . 4 (𝐹𝑋) ∈ V
10099unisn 4924 . . 3 {(𝐹𝑋)} = (𝐹𝑋)
10198, 100eqtrdi 2784 . 2 (𝜑 (𝐹 “ [𝑋](𝐺 ~QG 𝑁)) = (𝐹𝑋))
10219, 101eqtrd 2768 1 (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝑁)) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wrex 3066  Vcvv 3470  wss 3945  {csn 4624   cuni 4903   class class class wbr 5142  cmpt 5225  ccnv 5671  cima 5675   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414   Er wer 8715  [cec 8716   / cqs 8717  Basecbs 17173  +gcplusg 17226  0gc0g 17414   /s cqus 17480  Grpcgrp 18883  invgcminusg 18884  SubGrpcsubg 19068  NrmSGrpcnsg 19069   ~QG cqg 19070   GrpHom cghm 19160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-ec 8720  df-qs 8724  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-inf 9460  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-fz 13511  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-0g 17416  df-imas 17483  df-qus 17484  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-grp 18886  df-minusg 18887  df-subg 19071  df-nsg 19072  df-eqg 19073  df-ghm 19161
This theorem is referenced by:  ghmqusnsglem2  33124  ghmqusnsg  33125  rhmqusnsg  33137
  Copyright terms: Public domain W3C validator
OSZAR »