Step | Hyp | Ref
| Expression |
1 | | ghmqusnsg.j |
. . 3
⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪
(𝐹 “ 𝑞)) |
2 | | imaeq2 6053 |
. . . 4
⊢ (𝑞 = [𝑋](𝐺 ~QG 𝑁) → (𝐹 “ 𝑞) = (𝐹 “ [𝑋](𝐺 ~QG 𝑁))) |
3 | 2 | unieqd 4916 |
. . 3
⊢ (𝑞 = [𝑋](𝐺 ~QG 𝑁) → ∪ (𝐹 “ 𝑞) = ∪ (𝐹 “ [𝑋](𝐺 ~QG 𝑁))) |
4 | | ghmqusnsglem1.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐺)) |
5 | | ovex 7447 |
. . . . . 6
⊢ (𝐺 ~QG 𝑁) ∈ V |
6 | 5 | ecelqsi 8785 |
. . . . 5
⊢ (𝑋 ∈ (Base‘𝐺) → [𝑋](𝐺 ~QG 𝑁) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁))) |
7 | 4, 6 | syl 17 |
. . . 4
⊢ (𝜑 → [𝑋](𝐺 ~QG 𝑁) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁))) |
8 | | ghmqusnsg.q |
. . . . . 6
⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) |
9 | 8 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))) |
10 | | eqidd 2729 |
. . . . 5
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) |
11 | | ovexd 7449 |
. . . . 5
⊢ (𝜑 → (𝐺 ~QG 𝑁) ∈ V) |
12 | | ghmqusnsg.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
13 | | ghmgrp1 19165 |
. . . . . 6
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp) |
14 | 12, 13 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ Grp) |
15 | 9, 10, 11, 14 | qusbas 17520 |
. . . 4
⊢ (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) = (Base‘𝑄)) |
16 | 7, 15 | eleqtrd 2831 |
. . 3
⊢ (𝜑 → [𝑋](𝐺 ~QG 𝑁) ∈ (Base‘𝑄)) |
17 | 12 | imaexd 7918 |
. . . 4
⊢ (𝜑 → (𝐹 “ [𝑋](𝐺 ~QG 𝑁)) ∈ V) |
18 | 17 | uniexd 7741 |
. . 3
⊢ (𝜑 → ∪ (𝐹
“ [𝑋](𝐺 ~QG 𝑁)) ∈ V) |
19 | 1, 3, 16, 18 | fvmptd3 7022 |
. 2
⊢ (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝑁)) = ∪ (𝐹 “ [𝑋](𝐺 ~QG 𝑁))) |
20 | | eqid 2728 |
. . . . . . . . . 10
⊢
(Base‘𝐺) =
(Base‘𝐺) |
21 | | eqid 2728 |
. . . . . . . . . 10
⊢
(Base‘𝐻) =
(Base‘𝐻) |
22 | 20, 21 | ghmf 19167 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
23 | 12, 22 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
24 | 23 | ffnd 6717 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn (Base‘𝐺)) |
25 | | ghmqusnsg.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
26 | | nsgsubg 19106 |
. . . . . . . . 9
⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) |
27 | | eqid 2728 |
. . . . . . . . . 10
⊢ (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁) |
28 | 20, 27 | eqger 19126 |
. . . . . . . . 9
⊢ (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er (Base‘𝐺)) |
29 | 25, 26, 28 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 ~QG 𝑁) Er (Base‘𝐺)) |
30 | 29 | ecss 8765 |
. . . . . . 7
⊢ (𝜑 → [𝑋](𝐺 ~QG 𝑁) ⊆ (Base‘𝐺)) |
31 | 24, 30 | fvelimabd 6966 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ (𝐹 “ [𝑋](𝐺 ~QG 𝑁)) ↔ ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝑁)(𝐹‘𝑧) = 𝑦)) |
32 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) ∧ (𝐹‘𝑧) = 𝑦) → (𝐹‘𝑧) = 𝑦) |
33 | 12 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
34 | | eqid 2728 |
. . . . . . . . . . . . . . . 16
⊢
(invg‘𝐺) = (invg‘𝐺) |
35 | 33, 13 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝐺 ∈ Grp) |
36 | 4 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝑋 ∈ (Base‘𝐺)) |
37 | 20, 34, 35, 36 | grpinvcld 18938 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((invg‘𝐺)‘𝑋) ∈ (Base‘𝐺)) |
38 | 30 | sselda 3978 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝑧 ∈ (Base‘𝐺)) |
39 | | eqid 2728 |
. . . . . . . . . . . . . . . 16
⊢
(+g‘𝐺) = (+g‘𝐺) |
40 | | eqid 2728 |
. . . . . . . . . . . . . . . 16
⊢
(+g‘𝐻) = (+g‘𝐻) |
41 | 20, 39, 40 | ghmlin 19168 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ ((invg‘𝐺)‘𝑋) ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹‘(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧)) = ((𝐹‘((invg‘𝐺)‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) |
42 | 33, 37, 38, 41 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (𝐹‘(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧)) = ((𝐹‘((invg‘𝐺)‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) |
43 | 24 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝐹 Fn (Base‘𝐺)) |
44 | | ghmqusnsg.n |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ⊆ 𝐾) |
45 | | ghmqusnsg.k |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐾 = (◡𝐹 “ { 0 }) |
46 | 44, 45 | sseqtrdi 4028 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 ⊆ (◡𝐹 “ { 0 })) |
47 | 46 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝑁 ⊆ (◡𝐹 “ { 0 })) |
48 | 20 | subgss 19075 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 ⊆ (Base‘𝐺)) |
49 | 25, 26, 48 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ⊆ (Base‘𝐺)) |
50 | 49 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝑁 ⊆ (Base‘𝐺)) |
51 | | vex 3474 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑧 ∈ V |
52 | | elecg 8761 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧 ∈ V ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑧 ∈ [𝑋](𝐺 ~QG 𝑁) ↔ 𝑋(𝐺 ~QG 𝑁)𝑧)) |
53 | 51, 52 | mpan 689 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑋 ∈ (Base‘𝐺) → (𝑧 ∈ [𝑋](𝐺 ~QG 𝑁) ↔ 𝑋(𝐺 ~QG 𝑁)𝑧)) |
54 | 53 | biimpa 476 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝑋(𝐺 ~QG 𝑁)𝑧) |
55 | 4, 54 | sylan 579 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝑋(𝐺 ~QG 𝑁)𝑧) |
56 | 20, 34, 39, 27 | eqgval 19125 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ⊆ (Base‘𝐺)) → (𝑋(𝐺 ~QG 𝑁)𝑧 ↔ (𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺) ∧ (((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ 𝑁))) |
57 | 56 | biimpa 476 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ⊆ (Base‘𝐺)) ∧ 𝑋(𝐺 ~QG 𝑁)𝑧) → (𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺) ∧ (((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ 𝑁)) |
58 | 57 | simp3d 1142 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ⊆ (Base‘𝐺)) ∧ 𝑋(𝐺 ~QG 𝑁)𝑧) → (((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ 𝑁) |
59 | 35, 50, 55, 58 | syl21anc 837 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ 𝑁) |
60 | 47, 59 | sseldd 3979 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ (◡𝐹 “ { 0 })) |
61 | | fniniseg 7063 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 Fn (Base‘𝐺) →
((((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ (◡𝐹 “ { 0 }) ↔
((((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧)) = 0 ))) |
62 | 61 | biimpa 476 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 Fn (Base‘𝐺) ∧
(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ (◡𝐹 “ { 0 })) →
((((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧)) = 0 )) |
63 | 43, 60, 62 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧)) = 0 )) |
64 | 63 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (𝐹‘(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧)) = 0 ) |
65 | 42, 64 | eqtr3d 2770 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((𝐹‘((invg‘𝐺)‘𝑋))(+g‘𝐻)(𝐹‘𝑧)) = 0 ) |
66 | 65 | oveq2d 7430 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((𝐹‘𝑋)(+g‘𝐻)((𝐹‘((invg‘𝐺)‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) = ((𝐹‘𝑋)(+g‘𝐻) 0 )) |
67 | | eqid 2728 |
. . . . . . . . . . . . . . . . 17
⊢
(invg‘𝐻) = (invg‘𝐻) |
68 | 20, 34, 67 | ghminv 19170 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑋 ∈ (Base‘𝐺)) → (𝐹‘((invg‘𝐺)‘𝑋)) = ((invg‘𝐻)‘(𝐹‘𝑋))) |
69 | 33, 36, 68 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (𝐹‘((invg‘𝐺)‘𝑋)) = ((invg‘𝐻)‘(𝐹‘𝑋))) |
70 | 69 | oveq1d 7429 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((𝐹‘((invg‘𝐺)‘𝑋))(+g‘𝐻)(𝐹‘𝑧)) = (((invg‘𝐻)‘(𝐹‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) |
71 | 70 | oveq2d 7430 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((𝐹‘𝑋)(+g‘𝐻)((𝐹‘((invg‘𝐺)‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) = ((𝐹‘𝑋)(+g‘𝐻)(((invg‘𝐻)‘(𝐹‘𝑋))(+g‘𝐻)(𝐹‘𝑧)))) |
72 | | ghmgrp2 19166 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp) |
73 | 33, 72 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝐻 ∈ Grp) |
74 | 33, 22 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
75 | 74, 36 | ffvelcdmd 7089 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (𝐹‘𝑋) ∈ (Base‘𝐻)) |
76 | 74, 38 | ffvelcdmd 7089 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (𝐹‘𝑧) ∈ (Base‘𝐻)) |
77 | 21, 40, 67 | grpasscan1 18951 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 ∈ Grp ∧ (𝐹‘𝑋) ∈ (Base‘𝐻) ∧ (𝐹‘𝑧) ∈ (Base‘𝐻)) → ((𝐹‘𝑋)(+g‘𝐻)(((invg‘𝐻)‘(𝐹‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) = (𝐹‘𝑧)) |
78 | 73, 75, 76, 77 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((𝐹‘𝑋)(+g‘𝐻)(((invg‘𝐻)‘(𝐹‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) = (𝐹‘𝑧)) |
79 | 71, 78 | eqtrd 2768 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((𝐹‘𝑋)(+g‘𝐻)((𝐹‘((invg‘𝐺)‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) = (𝐹‘𝑧)) |
80 | | ghmqusnsg.0 |
. . . . . . . . . . . . 13
⊢ 0 =
(0g‘𝐻) |
81 | 21, 40, 80, 73, 75 | grpridd 18920 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((𝐹‘𝑋)(+g‘𝐻) 0 ) = (𝐹‘𝑋)) |
82 | 66, 79, 81 | 3eqtr3d 2776 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (𝐹‘𝑧) = (𝐹‘𝑋)) |
83 | 82 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) ∧ (𝐹‘𝑧) = 𝑦) → (𝐹‘𝑧) = (𝐹‘𝑋)) |
84 | 32, 83 | eqtr3d 2770 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) ∧ (𝐹‘𝑧) = 𝑦) → 𝑦 = (𝐹‘𝑋)) |
85 | 84 | r19.29an 3154 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝑁)(𝐹‘𝑧) = 𝑦) → 𝑦 = (𝐹‘𝑋)) |
86 | | fveqeq2 6900 |
. . . . . . . . 9
⊢ (𝑧 = 𝑋 → ((𝐹‘𝑧) = 𝑦 ↔ (𝐹‘𝑋) = 𝑦)) |
87 | | ecref 8762 |
. . . . . . . . . . 11
⊢ (((𝐺 ~QG 𝑁) Er (Base‘𝐺) ∧ 𝑋 ∈ (Base‘𝐺)) → 𝑋 ∈ [𝑋](𝐺 ~QG 𝑁)) |
88 | 29, 4, 87 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ [𝑋](𝐺 ~QG 𝑁)) |
89 | 88 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) → 𝑋 ∈ [𝑋](𝐺 ~QG 𝑁)) |
90 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) → 𝑦 = (𝐹‘𝑋)) |
91 | 90 | eqcomd 2734 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) → (𝐹‘𝑋) = 𝑦) |
92 | 86, 89, 91 | rspcedvdw 3611 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) → ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝑁)(𝐹‘𝑧) = 𝑦) |
93 | 85, 92 | impbida 800 |
. . . . . . 7
⊢ (𝜑 → (∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝑁)(𝐹‘𝑧) = 𝑦 ↔ 𝑦 = (𝐹‘𝑋))) |
94 | | velsn 4640 |
. . . . . . 7
⊢ (𝑦 ∈ {(𝐹‘𝑋)} ↔ 𝑦 = (𝐹‘𝑋)) |
95 | 93, 94 | bitr4di 289 |
. . . . . 6
⊢ (𝜑 → (∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝑁)(𝐹‘𝑧) = 𝑦 ↔ 𝑦 ∈ {(𝐹‘𝑋)})) |
96 | 31, 95 | bitrd 279 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ (𝐹 “ [𝑋](𝐺 ~QG 𝑁)) ↔ 𝑦 ∈ {(𝐹‘𝑋)})) |
97 | 96 | eqrdv 2726 |
. . . 4
⊢ (𝜑 → (𝐹 “ [𝑋](𝐺 ~QG 𝑁)) = {(𝐹‘𝑋)}) |
98 | 97 | unieqd 4916 |
. . 3
⊢ (𝜑 → ∪ (𝐹
“ [𝑋](𝐺 ~QG 𝑁)) = ∪ {(𝐹‘𝑋)}) |
99 | | fvex 6904 |
. . . 4
⊢ (𝐹‘𝑋) ∈ V |
100 | 99 | unisn 4924 |
. . 3
⊢ ∪ {(𝐹‘𝑋)} = (𝐹‘𝑋) |
101 | 98, 100 | eqtrdi 2784 |
. 2
⊢ (𝜑 → ∪ (𝐹
“ [𝑋](𝐺 ~QG 𝑁)) = (𝐹‘𝑋)) |
102 | 19, 101 | eqtrd 2768 |
1
⊢ (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝑁)) = (𝐹‘𝑋)) |