Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaprnlem3uN Structured version   Visualization version   GIF version

Theorem hdmaprnlem3uN 41318
Description: Part of proof of part 12 in [Baer] p. 49. (Contributed by NM, 29-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmaprnlem1.h 𝐻 = (LHyp‘𝐾)
hdmaprnlem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmaprnlem1.v 𝑉 = (Base‘𝑈)
hdmaprnlem1.n 𝑁 = (LSpan‘𝑈)
hdmaprnlem1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmaprnlem1.l 𝐿 = (LSpan‘𝐶)
hdmaprnlem1.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmaprnlem1.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmaprnlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmaprnlem1.se (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
hdmaprnlem1.ve (𝜑𝑣𝑉)
hdmaprnlem1.e (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
hdmaprnlem1.ue (𝜑𝑢𝑉)
hdmaprnlem1.un (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
hdmaprnlem1.d 𝐷 = (Base‘𝐶)
hdmaprnlem1.q 𝑄 = (0g𝐶)
hdmaprnlem1.o 0 = (0g𝑈)
hdmaprnlem1.a = (+g𝐶)
Assertion
Ref Expression
hdmaprnlem3uN (𝜑 → (𝑁‘{𝑢}) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})))

Proof of Theorem hdmaprnlem3uN
StepHypRef Expression
1 hdmaprnlem1.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmaprnlem1.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
3 hdmaprnlem1.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 eqid 2728 . . 3 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5 hdmaprnlem1.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
61, 3, 5dvhlmod 40577 . . . 4 (𝜑𝑈 ∈ LMod)
7 hdmaprnlem1.ue . . . 4 (𝜑𝑢𝑉)
8 hdmaprnlem1.v . . . . 5 𝑉 = (Base‘𝑈)
9 hdmaprnlem1.n . . . . 5 𝑁 = (LSpan‘𝑈)
108, 4, 9lspsncl 20854 . . . 4 ((𝑈 ∈ LMod ∧ 𝑢𝑉) → (𝑁‘{𝑢}) ∈ (LSubSp‘𝑈))
116, 7, 10syl2anc 583 . . 3 (𝜑 → (𝑁‘{𝑢}) ∈ (LSubSp‘𝑈))
121, 2, 3, 4, 5, 11mapdcnvid1N 41121 . 2 (𝜑 → (𝑀‘(𝑀‘(𝑁‘{𝑢}))) = (𝑁‘{𝑢}))
13 hdmaprnlem1.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
14 hdmaprnlem1.l . . . . 5 𝐿 = (LSpan‘𝐶)
15 hdmaprnlem1.s . . . . 5 𝑆 = ((HDMap‘𝐾)‘𝑊)
161, 3, 8, 9, 13, 14, 2, 15, 5, 7hdmap10 41307 . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑢})) = (𝐿‘{(𝑆𝑢)}))
17 hdmaprnlem1.d . . . . 5 𝐷 = (Base‘𝐶)
18 hdmaprnlem1.a . . . . 5 = (+g𝐶)
19 hdmaprnlem1.q . . . . 5 𝑄 = (0g𝐶)
201, 13, 5lcdlvec 41058 . . . . 5 (𝜑𝐶 ∈ LVec)
211, 3, 8, 13, 17, 15, 5, 7hdmapcl 41297 . . . . 5 (𝜑 → (𝑆𝑢) ∈ 𝐷)
22 hdmaprnlem1.se . . . . 5 (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
23 hdmaprnlem1.ve . . . . . 6 (𝜑𝑣𝑉)
24 hdmaprnlem1.e . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
25 hdmaprnlem1.un . . . . . 6 (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
261, 3, 8, 9, 13, 14, 2, 15, 5, 22, 23, 24, 7, 25hdmaprnlem1N 41316 . . . . 5 (𝜑 → (𝐿‘{(𝑆𝑢)}) ≠ (𝐿‘{𝑠}))
2717, 18, 19, 14, 20, 21, 22, 26lspindp3 21017 . . . 4 (𝜑 → (𝐿‘{(𝑆𝑢)}) ≠ (𝐿‘{((𝑆𝑢) 𝑠)}))
2816, 27eqnetrd 3004 . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑢})) ≠ (𝐿‘{((𝑆𝑢) 𝑠)}))
291, 2, 3, 4, 5, 11mapdcl 41120 . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑢})) ∈ ran 𝑀)
301, 13, 5lcdlmod 41059 . . . . . . 7 (𝜑𝐶 ∈ LMod)
3122eldifad 3957 . . . . . . . 8 (𝜑𝑠𝐷)
3217, 18lmodvacl 20751 . . . . . . . 8 ((𝐶 ∈ LMod ∧ (𝑆𝑢) ∈ 𝐷𝑠𝐷) → ((𝑆𝑢) 𝑠) ∈ 𝐷)
3330, 21, 31, 32syl3anc 1369 . . . . . . 7 (𝜑 → ((𝑆𝑢) 𝑠) ∈ 𝐷)
34 eqid 2728 . . . . . . . 8 (LSubSp‘𝐶) = (LSubSp‘𝐶)
3517, 34, 14lspsncl 20854 . . . . . . 7 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) 𝑠) ∈ 𝐷) → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
3630, 33, 35syl2anc 583 . . . . . 6 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
371, 2, 13, 34, 5mapdrn2 41118 . . . . . 6 (𝜑 → ran 𝑀 = (LSubSp‘𝐶))
3836, 37eleqtrrd 2832 . . . . 5 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ ran 𝑀)
391, 2, 5, 29, 38mapdcnv11N 41126 . . . 4 (𝜑 → ((𝑀‘(𝑀‘(𝑁‘{𝑢}))) = (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) ↔ (𝑀‘(𝑁‘{𝑢})) = (𝐿‘{((𝑆𝑢) 𝑠)})))
4039necon3bid 2981 . . 3 (𝜑 → ((𝑀‘(𝑀‘(𝑁‘{𝑢}))) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) ↔ (𝑀‘(𝑁‘{𝑢})) ≠ (𝐿‘{((𝑆𝑢) 𝑠)})))
4128, 40mpbird 257 . 2 (𝜑 → (𝑀‘(𝑀‘(𝑁‘{𝑢}))) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})))
4212, 41eqnetrrd 3005 1 (𝜑 → (𝑁‘{𝑢}) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2936  cdif 3942  {csn 4624  ccnv 5671  ran crn 5673  cfv 6542  (class class class)co 7414  Basecbs 17173  +gcplusg 17226  0gc0g 17414  LModclmod 20736  LSubSpclss 20808  LSpanclspn 20848  HLchlt 38816  LHypclh 39451  DVecHcdvh 40545  LCDualclcd 41053  mapdcmpd 41091  HDMapchdma 41259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-riotaBAD 38419
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-tpos 8225  df-undef 8272  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-0g 17416  df-mre 17559  df-mrc 17560  df-acs 17562  df-proset 18280  df-poset 18298  df-plt 18315  df-lub 18331  df-glb 18332  df-join 18333  df-meet 18334  df-p0 18410  df-p1 18411  df-lat 18417  df-clat 18484  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-grp 18886  df-minusg 18887  df-sbg 18888  df-subg 19071  df-cntz 19261  df-oppg 19290  df-lsm 19584  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168  df-oppr 20266  df-dvdsr 20289  df-unit 20290  df-invr 20320  df-dvr 20333  df-drng 20619  df-lmod 20738  df-lss 20809  df-lsp 20849  df-lvec 20981  df-lsatoms 38442  df-lshyp 38443  df-lcv 38485  df-lfl 38524  df-lkr 38552  df-ldual 38590  df-oposet 38642  df-ol 38644  df-oml 38645  df-covers 38732  df-ats 38733  df-atl 38764  df-cvlat 38788  df-hlat 38817  df-llines 38965  df-lplanes 38966  df-lvols 38967  df-lines 38968  df-psubsp 38970  df-pmap 38971  df-padd 39263  df-lhyp 39455  df-laut 39456  df-ldil 39571  df-ltrn 39572  df-trl 39626  df-tgrp 40210  df-tendo 40222  df-edring 40224  df-dveca 40470  df-disoa 40496  df-dvech 40546  df-dib 40606  df-dic 40640  df-dih 40696  df-doch 40815  df-djh 40862  df-lcdual 41054  df-mapd 41092  df-hvmap 41224  df-hdmap1 41260  df-hdmap 41261
This theorem is referenced by:  hdmaprnlem3eN  41325
  Copyright terms: Public domain W3C validator
OSZAR »