![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imasgim | Structured version Visualization version GIF version |
Description: A relabeling of the elements of a group induces an isomorphism to the relabeled group. MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015.) (Revised by Mario Carneiro, 11-Aug-2015.) |
Ref | Expression |
---|---|
imasgim.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imasgim.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imasgim.f | ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) |
imasgim.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
Ref | Expression |
---|---|
imasgim | ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpIso 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2728 | . . 3 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
3 | eqid 2728 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
4 | eqid 2728 | . . 3 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
5 | imasgim.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
6 | imasgim.u | . . . . 5 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
7 | imasgim.v | . . . . 5 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
8 | eqidd 2729 | . . . . 5 ⊢ (𝜑 → (+g‘𝑅) = (+g‘𝑅)) | |
9 | imasgim.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) | |
10 | f1ofo 6846 | . . . . . 6 ⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉–onto→𝐵) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
12 | 9 | f1ocpbl 17506 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑐) ∧ (𝐹‘𝑏) = (𝐹‘𝑑)) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = (𝐹‘(𝑐(+g‘𝑅)𝑑)))) |
13 | eqid 2728 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
14 | 6, 7, 8, 11, 12, 5, 13 | imasgrp 19011 | . . . 4 ⊢ (𝜑 → (𝑈 ∈ Grp ∧ (𝐹‘(0g‘𝑅)) = (0g‘𝑈))) |
15 | 14 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑈 ∈ Grp) |
16 | 6, 7, 11, 5 | imasbas 17493 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝑈)) |
17 | f1oeq3 6829 | . . . . . . 7 ⊢ (𝐵 = (Base‘𝑈) → (𝐹:𝑉–1-1-onto→𝐵 ↔ 𝐹:𝑉–1-1-onto→(Base‘𝑈))) | |
18 | 16, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐹:𝑉–1-1-onto→𝐵 ↔ 𝐹:𝑉–1-1-onto→(Base‘𝑈))) |
19 | 9, 18 | mpbid 231 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→(Base‘𝑈)) |
20 | 7 | f1oeq2d 6835 | . . . . 5 ⊢ (𝜑 → (𝐹:𝑉–1-1-onto→(Base‘𝑈) ↔ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈))) |
21 | 19, 20 | mpbid 231 | . . . 4 ⊢ (𝜑 → 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈)) |
22 | f1of 6839 | . . . 4 ⊢ (𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈) → 𝐹:(Base‘𝑅)⟶(Base‘𝑈)) | |
23 | 21, 22 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:(Base‘𝑅)⟶(Base‘𝑈)) |
24 | 7 | eleq2d 2815 | . . . . . 6 ⊢ (𝜑 → (𝑎 ∈ 𝑉 ↔ 𝑎 ∈ (Base‘𝑅))) |
25 | 7 | eleq2d 2815 | . . . . . 6 ⊢ (𝜑 → (𝑏 ∈ 𝑉 ↔ 𝑏 ∈ (Base‘𝑅))) |
26 | 24, 25 | anbi12d 631 | . . . . 5 ⊢ (𝜑 → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ↔ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)))) |
27 | 11, 12, 6, 7, 5, 3, 4 | imasaddval 17513 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏)) = (𝐹‘(𝑎(+g‘𝑅)𝑏))) |
28 | 27 | eqcomd 2734 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏))) |
29 | 28 | 3expib 1120 | . . . . 5 ⊢ (𝜑 → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏)))) |
30 | 26, 29 | sylbird 260 | . . . 4 ⊢ (𝜑 → ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏)))) |
31 | 30 | imp 406 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏))) |
32 | 1, 2, 3, 4, 5, 15, 23, 31 | isghmd 19178 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑈)) |
33 | 1, 2 | isgim 19215 | . 2 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑈) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑈) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈))) |
34 | 32, 21, 33 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpIso 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ⟶wf 6544 –onto→wfo 6546 –1-1-onto→wf1o 6547 ‘cfv 6548 (class class class)co 7420 Basecbs 17179 +gcplusg 17232 0gc0g 17420 “s cimas 17485 Grpcgrp 18889 GrpHom cghm 19166 GrpIso cgim 19210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-fz 13517 df-struct 17115 df-slot 17150 df-ndx 17162 df-base 17180 df-plusg 17245 df-mulr 17246 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-0g 17422 df-imas 17489 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18892 df-minusg 18893 df-ghm 19167 df-gim 19212 |
This theorem is referenced by: isnumbasgrplem1 42525 |
Copyright terms: Public domain | W3C validator |