MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipge0 Structured version   Visualization version   GIF version

Theorem ipge0 25166
Description: The inner product in a subcomplex pre-Hilbert space is positive definite. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
reipcl.v 𝑉 = (Base‘𝑊)
reipcl.h , = (·𝑖𝑊)
Assertion
Ref Expression
ipge0 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → 0 ≤ (𝐴 , 𝐴))

Proof of Theorem ipge0
StepHypRef Expression
1 cphngp 25141 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
2 reipcl.v . . . . 5 𝑉 = (Base‘𝑊)
3 eqid 2725 . . . . 5 (norm‘𝑊) = (norm‘𝑊)
42, 3nmcl 24565 . . . 4 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → ((norm‘𝑊)‘𝐴) ∈ ℝ)
51, 4sylan 578 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → ((norm‘𝑊)‘𝐴) ∈ ℝ)
65sqge0d 14135 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → 0 ≤ (((norm‘𝑊)‘𝐴)↑2))
7 reipcl.h . . 3 , = (·𝑖𝑊)
82, 7, 3nmsq 25162 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → (((norm‘𝑊)‘𝐴)↑2) = (𝐴 , 𝐴))
96, 8breqtrd 5175 1 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → 0 ≤ (𝐴 , 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098   class class class wbr 5149  cfv 6548  (class class class)co 7418  cr 11138  0cc0 11139  cle 11280  2c2 12298  cexp 14060  Basecbs 17181  ·𝑖cip 17239  normcnm 24525  NrmGrpcngp 24526  ℂPreHilccph 25134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217  ax-addf 11218  ax-mulf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6306  df-ord 6373  df-on 6374  df-lim 6375  df-suc 6376  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7374  df-ov 7421  df-oprab 7422  df-mpo 7423  df-om 7871  df-1st 7993  df-2nd 7994  df-tpos 8231  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-er 8724  df-map 8846  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-sup 9466  df-inf 9467  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-z 12590  df-dec 12709  df-uz 12854  df-q 12964  df-rp 13008  df-xneg 13125  df-xadd 13126  df-xmul 13127  df-fz 13518  df-seq 14001  df-exp 14061  df-cj 15080  df-re 15081  df-im 15082  df-sqrt 15216  df-abs 15217  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17182  df-ress 17211  df-plusg 17247  df-mulr 17248  df-starv 17249  df-sca 17250  df-vsca 17251  df-ip 17252  df-tset 17253  df-ple 17254  df-ds 17256  df-unif 17257  df-0g 17424  df-topgen 17426  df-mgm 18601  df-sgrp 18680  df-mnd 18696  df-grp 18899  df-minusg 18900  df-subg 19084  df-ghm 19174  df-cmn 19746  df-abl 19747  df-mgp 20084  df-rng 20102  df-ur 20131  df-ring 20184  df-cring 20185  df-oppr 20282  df-dvdsr 20305  df-unit 20306  df-subrg 20517  df-drng 20635  df-lmhm 20916  df-lvec 20997  df-sra 21067  df-rgmod 21068  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-cnfld 21294  df-phl 21572  df-top 22836  df-topon 22853  df-topsp 22875  df-bases 22889  df-xms 24266  df-ms 24267  df-nm 24531  df-ngp 24532  df-nlm 24535  df-cph 25136
This theorem is referenced by:  ipcau  25206  pjthlem1  25405
  Copyright terms: Public domain W3C validator
OSZAR »